It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Seems you're upset that this thread is successful,
Yes it's interesting that the 1859 storm occurred under similar circumstances to now.
Originally posted by Chadwickus
reply to post by sith9157
They typically take 2-3 days to reach us, although the largest ever recorded took just 18 hours, this was back in 1859.
Light from the flare reaches Earth in only 8 minutes. High energy protons can follow in another ten to twenty minutes, although sometimes they take longer.
The Jan. 20 proton storm was by some measures the biggest since 1989. It was particularly rich in high-speed protons packing more than 100 million electron volts (100 MeV) of energy. Such protons can burrow through 11 centimeters of water. A thin-skinned spacesuit would have offered little resistance.
"That's why you want to be indoors when the proton storm hits," said Cucinotta.
"That's why you want to be indoors when the proton storm hits,"
But sometimes the Sun has a big explosion on its surface. These eruptions are called "solar storms" when they throw fast protons or electrons out into space. They can produce a lot of dangerous, fast protons that can have speeds as much as 100,000 times faster than bullets. Because of these solar storms, scientists use the term "space weather."
Sometimes during a solar storm, a whole lot of electrons race out from the Sun at high speeds. If lots of solar electrons reach the Earth all at once, it can mess up our electric power lines and even cause power blackouts. In fact, a solar storm event in 1989 almost caused the US one of its worst power blackouts ever, and it did make 6 million people in Quebec lose power for several hours.
Since protons are too small to be seen we can't see them coming, but we can detect them when they get here. There are special proton detectors on several ongoing space missions like SOHO and GOES. These detectors alert us when a big blast of fast protons arrives at Earth, but not before.