It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
originally posted by: Willtell
a reply to: OtherSideOfTheCoin
You need to have another beer.
"We've opened up an enormous new realm," Weijers said. "I don't know what that limit is, but it's beyond 100 tesla. The required materials exist. It's just technology and dollars that are between us and 100 tesla."
phys.org - National MagLab's latest magnet snags world record, marks new era of scientific discovery
"Our task was to change the 1D structure in order to increase the temperature of superconductive transition" comments Anatoly Zatsepin, the head of a scientific research laboratory at Institute of Physics and Technology, UrFU. "It turned out that if you pile SWCNTs [single walled carbon nanotubes] up, Cooper pairs stabilize, and a superconductor is formed." Still, even such piles require quite low temperatures to exhibit superconductive properties - only 15 degrees above absolute zero.
Physicists found a solution for this issue as well. They added a one atom wide carbon "wire" inside SWCNTs. The chain itself does not form bonds with the atoms of the tube, but it makes the tube change its own geometry and flex.
When the team from UrFU changed the shape of the internal carbon chain from straight to zigzag-like, they managed to increase the temperature of superconductivity transition by 45 degrees. To achieve the best effect, the angles of zigzags were mathematically calculated, and the predictions proved to be correct.
Geostationary Operational Environmental Satellites X‐ray flux data, it is shown that the expected 150 year return level is approximately an X60 flare while a Carrington‐like flare is a one in a 100 year event. In the worst case the 150 year return level is an X90 flare while a Carrington flare is a one in 30 year event. It is also shown that the EVT results are consistent with flare data from the Kepler space telescope mission.
Asteroid 2010 WC9 will safely pass at about half’s the moon’s distance on Tuesday, May 15, 2018. Estimates of its size range from 197 to 427 feet (60-130 meters), making the May 15 pass one of the closest approaches ever observed of an asteroid of this size.