It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
The team found that adding just 0.01% graphene nanoflakes compared to the total mass of lubricant improved its thermal conductivity by 17%, with almost no changes in viscosity. The enhancement of the lubricant's thermal properties generally varied according to the size, concentration and heating rates of the graphene nanoflakes used. The researchers believe that the enhanced thermal properties are due to graphene's large surface area, even distribution and Brownian motion – the erratic random movement of its molecules due to collisions with other molecules. Improved thermal conduction means the lubricant is better able to carry heat away from an engine.
Researchers at Manchester University tested two kinds of rubbery materials - natural rubber and a man-made rubber. They added graphene of different kinds, amounts and size.
They found that adding a very small amount of graphene to rubber films can increase both its strength and stretchiness by up to 50%.
He [Gary Savage] said: "We have taken the best of everything we have learned in Formula One to create the best fly rod ever made."
"The rod is a game changer for expert and less-experienced anglers.
"It not only flexes deeply at the beginning of a cast but it straightens again powerfully, which gives you distance, and critically it also retains the vital 'feel' that salmon fishers need to adjust their technique and accuracy."
The rods cost almost £1,000 to buy.
...The spectral triangulation system developed by Rice chemist Bruce Weisman and his colleagues is intended to pinpoint targeted cancer tumors tagged with antibody-linked carbon nanotubes.
...
The Rice technique relies on the fact that single-walled carbon nanotubes naturally fluoresce at short-wave infrared wavelengths when excited by visible light. A highly sensitive detector called an InGaAs (indium gallium arsenide) avalanche photodiode made it possible to read faint signals from nanotubes up to 20 millimeters deep in the simulated tissue used for lab tests.
"We're using an unusually sensitive detector that hasn't been applied to this sort of work before," said Weisman, a recognized pioneer for his discovery and interpretation of near-infrared fluorescence from single-walled nanotubes.
...
"It gives us a fighting chance to see nanotubes deeper inside tissues because so little of the light that nanotubes emit finds its way to the surface," Weisman said. "We've been able to detect deeper into the tissues than I think anyone else has reported."
Rice University scientists have advanced their graphene-based de-icer to serve a dual purpose. The new material still melts ice from wings and wires when conditions get too cold. But if the air is above 7 degrees Fahrenheit, ice won't form at all.
The Rice lab of chemist James Tour gave its de-icer superhydrophobic (water-repelling) capabilities that passively prevent water from freezing above 7 degrees. The tough film that forms when the de-icer is sprayed on a surface is made of atom-thin graphene nanoribbons that are conductive, so the material can also be heated with electricity to melt ice and snow in colder conditions.
...
The Rice films use graphene nanoribbons modified with a fluorine compound to enhance their hydrophobicity. They found that nanoribbons modified with longer perfluorinated chains resulted in films with a higher contact angle, suggesting that the films are tunable for particular conditions
Over the past few years, researchers have begun working on making supercapacitors that are transparent and flexible due to their potential use in a wide variety of applications.
"Potential applications can be roughly divided into two categories: high-aesthetic-value products, such as activity bands and smart clothes, and inherently transparent end-uses, such as displays and windows," coauthor Tanja Kallio, an associate professor at Aalto University who is currently a visiting professor at the Skolkovo Institute of Science and Technology, told Phys.org. "The latter include, for example, such future applications as smart windows for automobiles and aerospace vehicles, self-powered rolled-up displays, self-powered wearable optoelectronics, and electronic skin."
The type of supercapacitor developed here, called an electrochemical double-layer capacitor, is based on high-surface-area carbon. One prime candidate for this material is single-walled carbon nanotubes due to their combination of many appealing properties, including a large surface area, high strength, high elasticity, and the ability to withstand extremely high currents, which is essential for fast charging and discharging.
[Michael Sung's] solution [to the problem of carbon emissions] is [to] take waste gas emissions and transform them into a usable fuel base for electric vehicles.
...
[H]is process hopes to be able to create one thousand times more yield at one thousandth the cost.
Sung and his team use a cubic press and a process similar to synthetic diamond production to collect graphene. A mix of nickel and iron powder is mixed into a solvent, and a graphite source is melted in the solvent and recollect onto a diamond seed.
Sung’s process takes a vacuum furnace and introduces his metal solvent and a high purity graphite source. The process melts off the carbon from the graphite source and the graphene layers float to the top of the furnace. The process should be scalable [he says]
When the palladium complex Pd2(dba)3 is dissolved in chloroform, it forms a dark red solution under normal circumstances. But when grapheme... is added to the solution, the palladium is completely consumed. As a result, the solution turns from dark red to colourless.
Using advanced imaging techniques, the researchers found that the palladium clusters selectively attach to graphene’s surface according to specific patterns, depending on how reactive the carbon centres are. Individual palladium particles settle onto point defects, local accumulations of particles are present on larger defects, and short chains outline linear defects.
...
The palladium particles act like a contrast agent, allowing the spatial imaging of the chemical reactivity, and thus the defects, of graphene layers.
Supercapacitors are promising energy storage devices.
...
[I]ndividual supercapacitor units have very low stand-off voltage, 3 V, the EDLCs [Electric Double Layer Capacitors] are connected in series stacks. The EDLCs need to be interconnected and balanced with an electronic circuit, which results in a bulky and expensive energy storage system.
The GESD-SBU [Graphene ESD, Stony Brook Univ.] team demonstrated design and implementation of a sealed high-voltage EDLCs energy storage unit. The unit is internally balanced, there is no need for an external circuit. ...The bench-top prototype unit, tested up to 10 V, exhibited good discharge characteristics and charge retention. This development enables new compact energy storage solutions for grid and vehicular applications.
...
High surface area and outstanding electrical conductivity of graphene enable devices with a unique combination of fast charge/discharge and large stored energy. Our devices utilize graphene platelets manufactured from high-quality natural graphite by a low-cost scalable process.
[Korea Advanced Institute of Science and Technology team] fabricated a transparent anode in a composite structure in which a TiO2 [titanium dioxide] layer with a high refractive index (high-n) and a hole-injection layer (HIL) of conducting polymers with a low refractive index (low-n) sandwich graphene electrodes. This is an optical design that induces a synergistic collaboration between the high-n and low-n layers to increase the effective reflectance of Tes [transparent electrodes]. As a result, the enhancement of the optical cavity resonance is maximized. The optical cavity resonance is related to the improvement of efficiency and color gamut in OLEDs. At the same time, the loss from surface plasmon polariton (SPP), a major cause for weak photon emissions in OLEDs, is also reduced due to the presence of the low-n conducting polymers.
Under this approach, graphene-based OLEDs exhibit 40.8% of ultrahigh external quantum efficiency (EQE) and 160.3 lm/W of power efficiency, which is unprecedented in those using graphene as a TE.
The basic principle of developing aerogel is to remove solvent in the gel and retain the integrity of the solidifying material. In the past, scientists used the sol-gel [solution-gel] method and template-oriented method. The former can synthesise aerogel on a large scale, but has poor controllability, while the latter generated ordered structures.
However, Professor Chao’s team explored a new method known as freeze-drying. Here, they basically freeze-dried solutions of carbon nanotubes and combined it with a large amounts of graphene oxide. Residual oxygen was then removed chemically.
“With no need for templates, its size only depends on that of the container,” he explained. “Bigger container can help produce the aerogel in bigger size, even to thousands of cubic centimetres or larger.”
The properties of [this] graphene aerogel are thought to be much more elastic than previous attempts
"In our new research, by integrating a large area multilayer (ML) graphene on a piece of printing paper, we managed to fabricate optoelectronic devices on paper using electro-modulation of graphene layer via reversible intercalation process."
The paper device consist[s] of two multilayer graphene layers transfer-printed on both sides of the paper. In this configuration, multilayer graphene simultaneously operates as the electrically reconfigurable optical medium and electrically conductive electrodes.
In addition, the paper substrate yields a flexible and foldable mechanical support for the graphene layers and it holds the electrolyte (room temperature ionic liquid) in the network of hydrophilic cellulose fibers.
originally posted by: TEOTWAWKIAIFF
A graphene/carbon nanotubes story that explains how graphene aerogel is made.
This conversion is made possible because the electronic speed can approach the light speed in graphene, breaking the 'light barrier.'" Just as breaking the sound barrier generates a shockwave of sound, he says, "In the case of graphene, this leads to the emission of a shockwave of light, trapped in two dimensions."
The phenomenon the team has harnessed is called the Čerenkov effect, first described 80 years ago by Soviet physicist Pavel Čerenkov. Usually associated with astronomical phenomenon and harnessed as a way of detecting ultrafast cosmic particles as they hurtle through the universe, and also to detect particles resulting from high-energy collisions in particle accelerators, the effect had not been considered relevant to Earthbound technology because it only works when objects are moving close to the speed of light. But the slowing of light inside a graphene sheet provided the opportunity to harness this effect in a practical form.
Constructing Nanoscale Photonic Devices
Engineering researchers achieved this feat by installing carbon nanotubes 1 micrometer in length by 1 nanometer in diameter on metal contacts transverse to the wave guide. The researchers accomplished this using dielectrophoresis, the movement of uncharged particles toward the position of maximum field strength in an unevenly charged electric field. Through this process, the carbon nanotubes were deposited from solution and arranged vertically to the waveguide. This method is highly effective for transferring nanoscale objects to carrier materials.
...
Even in this early laboratory stage, the researchers are producing light signals from electric signals in the gigahertz frequency range. Light-speed chips mean computers which are significantly faster than ever before, opening up a world of potential for future computing power.
The battery – which comprises an Aluminium-Graphene-Oxygen chemistry – is said to be safer and more stable than lithium-ion batteries, and is shown to have vastly superior energy density.
But perhaps even more significant is the patent that describes the chemical synthesis process to manufacture highest quality graphene on a commercial scale – one of the key barriers to the successful use of graphene in both battery storage applications and in solar cell development.
LWP says funds invested will be spent on developing prototypes for the first of three patents that have been lodged, with an initial focus on the battery technology – including an “ultra fast” rechargeable aluminium-graphene-ion battery.
The JV partners intend to license the technology to battery manufacturers and other industry participants.
Lawrence Livermore National Laboratory (LLNL) researchers, along with a team from UC Santa Cruz (UCSC), have devised a method for doubling the performance of 3-D-printed graphene-based supercapacitors.
The method, which involves sandwiching lithium ion and perchlorate ion between layers of graphene in aerogel electrodes, substantially improved the capacity of the electrodes while still maintaining the devices’ excellent rate capability.
Capacitance of graphene aerogel is limited by its relatively small ion-accessible surface area as a result of aggregation and stacking of graphene sheets.
The technology can work with almost any kind of power plant, but the researchers specifically investigated its application for combined cycle (CC) natural gas power plants, which are the most efficient kind of electrical power plant yet still emit massive amounts of CO2.
The idea is to add a molten lithium carbonate electrolyzer to a conventional CC plant, creating a CC carbon nanofiber (CC CNF) plant. Using electrolysis—the same technology that splits water to produce hydrogen—the system applies a voltage to split CO2 into oxygen gas and solid carbon nanofibers. Adding in small quantities of nickel causes the carbon nanofibers to be hollow, forming CNTs.
...
The researchers' assessment shows that, for every metric ton of methane fuel consumed, a conventional CC power plant produces $909 of electricity and emits 2.74 tons of CO2. In contrast, the proposed CC CNF plant would produce about $835 of electricity, which is about 8% less than the CC plant. But the CC CNF plant would also produce about 0.75 tons of CNTs, which is worth an estimated $225,000, and emits no CO2.