It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
In his masters thesis, Michael J. Clifford analyzes the feasibility of injection pumps returning brine into rock units after rock salt mining in Cleveland. ..............The company began considering other means of brine disposal, filed for a permit, and was granted one in June of 1971. With this permit, an observation well that had been drilled to the Oriskany Sandstone in 1959 was converted to a brine disposal well. The brine was pressure injected into the porous unit after filters and a pump were installed in May of 1972. Injection pressure is limited to fifteen gallons per minute into the unit at a pressure no more than fifty pascals per square inch. Since non-fresh water fluid injection is practiced in other units in Ohio as well, brine injection seems a minor threat to wells accessing the Oriskany Sandstone aquifer. Other wastes disposed by pressure injection are pickling liquors and phenols from steel productions, radioactive liquids, mixed organic such as plastics and insecticides, and other liquids which are expensive to treat in surface facilities, or for which no treatment is known with current technology.
And I said that it could be a mine collapse. Could be a coal mine. Heck, some of the Canadian quakes could be explosive detonations in the mines. Nearly a third of all Canadian siesmic events are mining activities.
The common view is that there is a one-in-seven chance of an earthquake of magnitude 9.0 or higher occurring along the Cascadia subduction zone within the next 50 years. More recent studies suggest the probability of that happening is more like one-in-three.