It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
of Science Express and will appear in an upcoming print issue of Science. www.missiontohumanity.com...
Researchers at the J. Craig Venter Institute (JCVI), a not-for-profit genomic research organization, published results today describing the successful construction of the first self-replicating, synthetic bacterial cell. The team synthesized the 1.08 million base pair chromosome of a modified Mycoplasma mycoides genome. The synthetic cell is called Mycoplasma mycoides JCVI-syn1.0 and is the proof of principle that genomes can be designed in the computer, chemically made in the laboratory and transplanted into a recipient cell to produce a new self-replicating cell controlled only by the synthetic genome. This research will be published by Daniel Gibson et al in the May 20th edition
Coast Guard Admiral Thad Allen, who leads the government's relief effort, said in June, “We're no longer dealing with a large, monolithic spill. We're dealing with an aggregation of hundreds of thousands of patches of oil that are going in a lot of different directions.” He noted that while cleaning up the oil spill on the surface will go on for a couple of months after the well is plugged, long-term issues of restoring the environment and the habitats will take years.
Bioremediation may have some role to play in that restoration provided the cure isn’t worse than the disease. The former approach was used as part of the cleanup effort after the Exxon Valdez spill. The addition of bacteria has been less successful. Bioremediation involves using microorganisms or their enzymes to return environments altered by contaminants to their original conditions. In the case of oil spills multiple techniques may be used, including the addition of nutrients to the environment to enhance and facilitate crude oil decomposition by specific bacteria or the introduction of oil-eating bacteria.
The company grows the microbes in proprietary continuous cell culture vessels to select microbes that have higher proliferation rates under specific conditions. The innovation behind Evolugate’s continuous culture vessels is that they are engineered to prevent microbes from sticking to the walls, a common strategy by which microbes evade selective pressure in other continuous culture technologies.
The Evolugate technology works via partial dilution: As a culture grows and becomes saturated, a small proportion of the grown culture is replaced with fresh medium, allowing the culture to continually grow at close to its maximum population size. Thomas Lyons, Ph.D., principal research scientist and board member of the firm, told GEN that in adapting the microbes for the Gulf oil spill, “we add more microbes every day to bolster genetic diversity.
“When we first started the culture we saw a die-off, and we expected that the dispersants and oil in the Gulf water-containing medium would kill some microbes. But after one week we saw a huge increase in cell density suggesting that adaptive variants arose. Within two weeks we already have robust growth on oil samples taken from the Gulf.
“The beauty of what we do is that we have built in evolutionary trade-offs: The longer the microbes spend evolving to the oil the less robust they become under other conditions. Once the oil is gone they will lose their competitive advantage and will no longer survive in that environment.”
Dr. Lyons noted that producing such designer microbes through genetic engineering would be hard to pull off. Oil is so full of complicated substances that jamming all the genes needed to digest and metabolize it into a single microbe and then expecting it to reproduce and flourish might be asking too much, he said. Experimental evolution, on the other hand, simultaneously changes metabolic capabilities as well as optimizes growth rates.
He also pointed out that right now the company’s proposal to select and introduce designer oil-eating microbes into the Gulf is in BP’s hands. “It’s in their pipeline, but we are not waiting for a response. We know our approach stands the best chance to make bioremediation work, and we are proceeding accordingly. .......To underscore Dr. Lyons’ point, while there are four oil eaters in this bacterial genus, each uses a different component of the oil as its food source and they all compete with one another when added to the same oil sample. In 1981, Dr. Chakrabarty received a patent on a genetically modified Pseudomonas bacterium that would eat up oil spills, the first patent of its kind; he was the first person to win a patent on a living organism. ”
“The beauty of what we do is that we have built in evolutionary trade-offs: The longer the microbes spend evolving to the oil the less robust they become under other conditions. Once the oil is gone they will lose their competitive advantage and will no longer survive in that environment.”
Originally posted by poet1b
I am still trying to understand how people blame Obama for the actions of BP and Halliburton.
All of this being said, do you think the Gulf oil disaster was much of an accident?
For those that ask "why is the media not reporting this" I must say it is because there is nothing to report.
Originally posted by camaro68ss
Does anyone know how many people are sick with this new virus. what are the ideas on how it spreads?
I would imagine that a synthetic virus would have various effects on various people.
SO, TELL ME. How is this harmful to the whole world