It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
originally posted by: TzarChasm
a reply to: cooperton
How exactly have quantum physics replaced Newtonian physics? Please be specific to each law of Newton.
originally posted by: cooperton
originally posted by: TzarChasm
a reply to: cooperton
How exactly have quantum physics replaced Newtonian physics? Please be specific to each law of Newton.
Because it is a more thorough explanation of the phenomenon observed at the quantum level. Although many of Newton's assertions remain true, it had to step aside to the more complete explanation described by quantum physics.
Quantized properties: Certain properties, such as position, speed and color, can sometimes only occur in specific, set amounts, much like a dial that "clicks" from number to number. This challenged a fundamental assumption of classical mechanics, which said that such properties should exist on a smooth, continuous spectrum. To describe the idea that some properties "clicked" like a dial with specific settings, scientists coined the word "quantized."
Particles of light: Light can sometimes behave as a particle. This was initially met with harsh criticism, as it ran contrary to 200 years of experiments showing that light behaved as a wave; much like ripples on the surface of a calm lake. Light behaves similarly in that it bounces off walls and bends around corners, and that the crests and troughs of the wave can add up or cancel out. Added wave crests result in brighter light, while waves that cancel out produce darkness. A light source can be thought of as a ball on a stick being rhythmically dipped in the center of a lake. The color emitted corresponds to the distance between the crests, which is determined by the speed of the ball's rhythm.
Waves of matter: Matter can also behave as a wave. This ran counter to the roughly 30 years of experiments showing that matter (such as electrons) exists as particles.
originally posted by: TzarChasm
The text above describes the principles of quantum physics. Nowhere does it say that newtonian physics are outdated or that magic has suddenly been realized or that an intelligent cosmic agency has been identified.
originally posted by: cooperton
originally posted by: TzarChasm
The text above describes the principles of quantum physics. Nowhere does it say that newtonian physics are outdated or that magic has suddenly been realized or that an intelligent cosmic agency has been identified.
Quantum physics disproves material reductionism. You suppose matter gave rise to all things, but quantum physics shows matter exists in a probabilistic waveform until it is measured. Therefore matter could not have generated the thing that actualizes it.
For a demonstration that overturned the great Isaac Newton’s ideas about the nature of light, it was staggeringly simple. It “may be repeated with great ease, wherever the sun shines,” the English physicist Thomas Young told the members of the Royal Society in London in November 1803, describing what is now known as a double-slit experiment, and Young wasn’t being overly melodramatic. He had come up with an elegant and decidedly homespun experiment to show light’s wavelike nature, and in doing so refuted Newton’s theory that light is made of corpuscles, or particles.
But the birth of quantum physics in the early 1900s made it clear that light is made of tiny, indivisible units, or quanta, of energy, which we call photons. Young’s experiment, when done with single photons or even single particles of matter, such as electrons and neutrons, is a conundrum to behold, raising fundamental questions about the very nature of reality. Some have even used it to argue that the quantum world is influenced by human consciousness, giving our minds an agency and a place in the ontology of the universe. But does the simple experiment really make such a case?
In the modern quantum form, Young’s experiment involves beaming individual particles of light or matter at two slits or openings cut into an otherwise opaque barrier. On the other side of the barrier is a screen that records the arrival of the particles (say, a photographic plate in the case of photons). Common sense leads us to expect that photons should go through one slit or the other and pile up behind each slit.
They don’t. Rather, they go to certain parts of the screen and avoid others, creating alternating bands of light and dark. These so-called interference fringes, the kind you get when two sets of waves overlap. When the crests of one wave line up with the crests of another, you get constructive interference (bright bands), and when the crests align with troughs you get destructive interference (darkness).
But there’s only one photon going through the apparatus at any one time. It’s as if each photon is going through both slits at once and interfering with itself. This doesn’t make classical sense.
Mathematically speaking, however, what goes through both slits is not a physical particle or a physical wave but something called a wave function—an abstract mathematical function that represents the photon’s state (in this case its position). The wave function behaves like a wave. It hits the two slits, and new waves emanate from each slit on the other side, spread and eventually interfere with each other. The combined wave function can be used to work out the probabilities of where one might find the photon.
The photon has a high probability of being found where the two wave functions constructively interfere and is unlikely to be found in regions of destructive interference. The measurement—in this case the interaction of the wave function with the photographic plate—is said to “collapse” the wave function. It goes from being spread out before measurement to peaking at one of those places where the photon materializes upon measurement.
This apparent measurement-induced collapse of the wave function is the source of many conceptual difficulties in quantum mechanics. Before the collapse, there’s no way to tell with certainty where the photon will land; it can appear at any one of the places of non-zero probability. There’s no way to chart the photon’s trajectory from the source to the detector. The photon is not real in the sense that a plane flying from San Francisco to New York is real.
Werner Heisenberg, among others, interpreted the mathematics to mean that reality doesn’t exist until observed. “The idea of an objective real world whose smallest parts exist objectively in the same sense as stones or trees exist, independently of whether or not we observe them ... is impossible,” he wrote. John Wheeler, too, used a variant of the double-slit experiment to argue that “no elementary quantum phenomenon is a phenomenon until it is a registered (‘observed,’ ‘indelibly recorded’) phenomenon.”
But quantum theory is entirely unclear about what constitutes a “measurement.” It simply postulates that the measuring device must be classical, without defining where such a boundary between the classical and quantum lies, thus leaving the door open for those who think that human consciousness needs to be invoked for collapse. Last May, Henry Stapp and colleagues argued, in this forum, that the double-slit experiment and its modern variants provide evidence that “a conscious observer may be indispensable” to make sense of the quantum realm and that a transpersonal mind underlies the material world.
But these experiments don’t constitute empirical evidence for such claims. In the double-slit experiment done with single photons, all one can do is verify the probabilistic predictions of the mathematics. If the probabilities are borne out over the course of sending tens of thousands of identical photons through the double slit, the theory claims that each photon’s wave function collapsed—thanks to an ill-defined process called measurement. That’s all.
Also, there are other ways of interpreting the double-slit experiment. Take the de Broglie-Bohm theory, which says that reality is both wave and particle. A photon heads towards the double slit with a definite position at all times and goes through one slit or the other; so each photon has a trajectory. It’s riding a pilot wave, which goes through both slits, interferes and then guides the photon to a location of constructive interference.
In 1979, Chris Dewdney and colleagues at Birkbeck College, London, simulated the theory’s prediction for the trajectories of particles going through the double slit. In the past decade, experimentalists have verified that such trajectories exist, albeit by using a controversial technique called weak measurements. The controversy notwithstanding, the experiments show that the de Broglie-Bohm theory remains in the running as an explanation for the behavior of the quantum world.
Crucially, the theory does not need observers or measurements or a non-material consciousness.
originally posted by: TzarChasm
Crucially, the theory does not need observers or measurements or a non-material consciousness.
blogs.scientificamerican.com...
You're just too argumentative and head strong to have a constructive discussion with, this forum isn't supposed to be a competition or childish d!ck measuring contest. Control your ego and get on with your life.
originally posted by: cooperton
originally posted by: TzarChasm
a reply to: cooperton
How exactly have quantum physics replaced Newtonian physics? Please be specific to each law of Newton.
Because it is a more thorough explanation of the phenomenon observed at the quantum level. Although many of Newton's assertions remain true, it had to step aside to the more complete explanation described by quantum physics.
You can believe scientific American's blog post, but I'll stick with the Copenhagen Interpretation which was formulated by the Nobel prize winning founders of quantum physics
originally posted by: cooperton
originally posted by: TzarChasm
Crucially, the theory does not need observers or measurements or a non-material consciousness.
blogs.scientificamerican.com...
You can believe scientific American's blog post, but I'll stick with the Copenhagen Interpretation which was formulated by the Nobel prize winning founders of quantum physics
originally posted by: cooperton
originally posted by: TzarChasm
You mean your confirmation bias is more comfortable with the copenhagen interpretation.
No I mean the opinion of Nobel prize winning quantum physicists holds more weight than an online science blog.
The metaphysical question is sometimes asked: "Could quantum mechanics be extended by adding so-called "hidden variables" to the mathematical formalism, to convert it from an epistemic to an ontic theory?" The Copenhagen interpretation answers this with a strong 'No'. It is sometimes alleged, for example by J.S. Bell, that Einstein opposed the Copenhagen interpretation because he believed that the answer to that question of "hidden variables" was "yes". By contrast, Max Jammer writes "Einstein never proposed a hidden variable theory." Einstein explored the possibility of a hidden variable theory, and wrote a paper describing his exploration, but withdrew it from publication because he felt it was faulty.
Because it asserts that a wave function becomes 'real' only when the system is observed, the term "subjective" is sometimes proposed for the Copenhagen interpretation. This term is rejected by many Copenhagenists because the process of observation is mechanical and does not depend on the individuality of the observer.
originally posted by: TzarChasm
Implying that these videos are somehow invalid because the video doesn't show footage that appeals to your taste?
originally posted by: cooperton
originally posted by: TzarChasm
And at the end of the day, it was proven beyond a doubt that there is no drake equation fallacy.
Randomness can not create inhabitable planets or biological life. The whole equation is irrelevant