It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Is Earth really a sort of giant living organism as the Gaia hypothesis predicts? A new discovery made at the University of Maryland may provide a key to answering this question. This key of sulfur could allow scientists to unlock heretofore hidden interactions between ocean organisms, atmosphere, and land -- interactions that might provide evidence supporting this famous theory.
The Gaia hypothesis, also known as Gaia theory or Gaia principle, proposes that all organisms and their inorganic surroundings on Earth are closely integrated to form a single and self-regulating complex system, maintaining the conditions for life on the planet.
The scientific investigation of the Gaia hypothesis focuses on observing how the biosphere and the evolution of life forms contribute to the stability of global temperature, ocean salinity, oxygen in the atmosphere and other factors of habitability in a preferred homeostasis. The Gaia hypothesis was formulated by the chemist James Lovelock and co-developed by the microbiologist Lynn Margulis in the 1970s.
Initially received with hostility by the scientific community, it is now studied in the disciplines of geophysiology and Earth system science, and some of its principles have been adopted in fields like biogeochemistry and systems ecology. This ecological hypothesis has also inspired analogies and various interpretations in social sciences, politics, and religion under a vague philosophy and movement.
One of the early predictions of this hypothesis was that there should be a sulfur compound made by organisms in the oceans that was stable enough against oxidation in water to allow its transfer to the air. Either the sulfur compound itself, or its atmospheric oxidation product, would have to return sulfur from the sea to the land surfaces. The most likely candidate for this role was deemed to be dimethylsulfide.
"Harry's work establishes that we should expect to see variability in the sulfur isotope signatures of these compounds in the oceans under different environmental conditions and for different organisms. I think this will ultimately be very important for using isotopes to trace the cycling of these compounds in the surface oceans as well as the flux of dimethylsulfide to the atmosphere. The ability to do this could help us answer important climate questions, and ultimately better predict climate changes. And it may even help us to better trace connections between dimethylsulfide emissions and sulfate aerosols, ultimately testing a coupling in the Gaia hypothesis," Farquhar says.
Originally posted by PsychoReaper4
Do you think the human society would treat the environment any differently even if it was proven 100% that the world is an actual living organism?
The ocean covers 71 percent of the Earth's surface and contains 97 percent of the planet's water, yet more than 95 percent of the underwater world remains unexplored.
To date, scientists have not observed abiogenesis happening in nature, nor have they been able to create a lifeform through controlled experiments. In fact, reaction conditions resembling the Earth's early conditions have even failed to produce the most basic polymers that all lifeforms possess (protein, DNA, RNA, etc.).
It is now understood that the probability of even a single protein forming through purely natural processes exceeds what is acceptable based on the law of probability. It is also important to understand that and the origin of life in reliant upon chance alone, since natural selection could play no part until a self-replicating cell had been formed.