It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Prion proteins play powerful role in survival, evolution of wild yeast strains
Prions, the much-maligned proteins most commonly known for causing "mad cow" disease, are commonly used in yeast to produce beneficial traits in the wild. Moreover, such traits can be passed on to subsequent generations and eventually become "hard-wired" into the genome, contributing to evolutionary change.
...Lindquist speculates that these shape-shifting proteins may be "remnants of early life," from a time when inheritance was predominantly protein-based rather than nucleic-acid based. She also theorizes that prions may play such roles beyond yeast, and her lab intends to take similar approaches in the hunt for prion activity in other organisms.
.....mammalian strains
It's an interesting book. Kind of like a more extreme version of Live Free Or Die Hard.
Scientists Identify Most Lethal Known Species of Prion Protein
Scientists from the Florida campus of The Scripps Research Institute have identified a single prion protein that causes neuronal death similar to that seen in "mad cow" disease, but is at least 10 times more lethal than larger prion species. This toxic single molecule or "monomer" challenges the prevailing concept that neuronal damage is linked to the toxicity of prion protein aggregates called "oligomers."
….Lasmézas explains that prion diseases are similar to Alzheimer's and other protein misfolding diseases in that they are caused by the toxicity of a misfolded host protein. Recent work, as reported in The New York Times, also found that diseases such as Alzheimer's resemble prion diseases by spreading from cell to cell.
The new study adds another twist. "Until now, it was thought that oligomers of proteins are toxic in all these diseases," Lasmézas said. "Since we found for the first time that an abnormally folded monomer is highly toxic, it opens up the possibility that this might be true also for some other protein misfolding diseases as well."