It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
A mineral brought back to Earth by the first men on the Moon and long thought to be unique to the lunar surface has been found in Australian rocks more than one billion years old, scientists say. Image Credit: Birger Rasmussen
When it comes to our natural human curiosity, we want to know if there’s something new out there… something we haven’t discovered yet. That’s why when lunar rock samples were returned, geologists were thrilled to find very specific minerals – armalcolite, pyroxferroite and tranquillityite – which belonged only to our Moon. However, over the years the first two were found here on Earth and tranquillityite was disclosed in specific meteorites. Named for Tranquility Base, site of the first Moon landing, tranquillityite was supposed to be the final hold-out… the last lunar unique mineral… until now.
Birger Rasmussen, paleontologist with Curtin University in Perth, and colleagues report in their Geology paper that they’ve uncovered tranquillityite in several remote locations in Western Australia. While the samples are incredibly small, about the width of a human hair and merely microns in length, their composition is undeniable. What’s more, tranquillityite may be a lot more common here on Earth than previously thought.
Rasmussen told the Sydney Morning Herald, “This was essentially the last mineral which was sort of uniquely lunar that had been found in the 70s from these samples returned from the Apollo mission.The mineral has since been found exclusively in returned lunar samples and lunar meteorites, with no terrestrial counterpart. We have now identified tranquillityite in six sites from Western Australia.”
“This means that basically we have the same chemical phenomena on the Moon and on Earth.” says Rasmussen. And one of the reasons why it has taken so long to be found is, “No one was looking hard enough.”