It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
ScienceDaily (Jan. 5, 2009) — Using a beam of light shunted through a tiny silicon channel, researchers have created a nanoscale trap that can stop free floating DNA molecules and nanoparticles in their tracks. By holding the nanoscale material steady while the fluid around it flows freely, the trap may allow researchers to boost the accuracy of biological sensors and create a range of new 'lab on a chip' diagnostic tools.
When DNA molecules suspended in a tiny stream of water flow through a nanoscale channel, they can be captured by a field of light if that light is confined in a device called a slot waveguide. The pressure from the light can then propel the DNA along the waveguide channel to bring the molecules to new locations. Such manipulation could prove valuable for assembling nanoscale structures, driving powerful sensors and developing a range of other technologies. (Credit: Nicolle Rager Fuller, National Science Foundation)