It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
We show that gravitational lensing by foreground galaxies will lead to a higher number of galaxies to be counted at redshifts z>8-10. This number may be boosted significantly, by as much as an order of magnitude. If there existed only three galaxies above the detection threshold at redshifts z>10 in the Hubble field-of-view without the presence of lensing, the bias from gravitational lensing may make as many as 10-30 of them visible in the Hubble images," explains Windhorst
This calculation was famously performed by astronomer Edwin Hubble in 1924, leading to the revelation that our galaxy is just one of many in a vast cosmic sea. Cepheids also helped in the discovery that our universe is expanding and galaxies are drifting apart.
Dr Mattia Negrello, of the Open University and lead researcher of the study, explained, "Our survey of the sky looks for sources of sub-millimetre light. The big breakthrough is that we have discovered that many of the brightest sources are being magnified by lenses, which means that we no longer have to rely on the rather inefficient methods of finding lenses which are used at visible and radio wavelengths."
NASA's Spitzer Space Telescope was able to show that a "standard candle" used to measure cosmological distances is shrinking -- a finding that affects precise measurements of the age, size and expansion rate of our universe. Image credit: NASA/JPL-Caltech/Iowa State
Astronomers have turned up the first direct proof that "standard candles" used to illuminate the size of the universe, termed Cepheids, shrink in mass, making them not quite as standard as once thought. The findings, made with NASA's Spitzer Space Telescope, will help astronomers make even more precise measurements of the size, age and expansion rate of our universe.
Standard candles are astronomical objects that make up the rungs of the so-called cosmic distance ladder, a tool for measuring the distances to farther and farther galaxies. The ladder's first rung consists of pulsating stars called Cepheid variables, or Cepheids for short. Measurements of the distances to these stars from Earth are critical in making precise measurements of even more distant objects. Each rung on the ladder depends on the previous one, so without accurate Cepheid measurements, the whole cosmic distance ladder would come unhinged.
Now, new observations from Spitzer show that keeping this ladder secure requires even more careful attention to Cepheids. The telescope's infrared observations of one particular Cepheid provide the first direct evidence that these stars can lose mass—or essentially shrink. This could affect measurements of their distances.
Everything crumbles in cosmology studies if you don't start up with the most precise measurements of Cepheids possible," said Pauline Barmby of the University of Western Ontario, Canada, lead author of the follow-up Cepheid study published online Jan. 6 in the Astronomical Journal. "This discovery will allow us to better understand these stars, and use them as ever more precise distance indicators."
Originally posted by kalenga
Very good research and heads up on finding this out. Keep us updated on any other news??
Scientists have apparently broken the universe’s speed limit. For generations, physicists believed there is nothing faster than light moving through a vacuum – a speed of 186,000 miles per second. But in an experiment in Princeton, N.J., physicists sent a pulse of laser light through cesium vapor so quickly that it left the chamber before it had even finished entering. The pulse traveled 310 times the distance it would have covered if the chamber had contained a vacuum.
As a general rule, light travels more slowly in any medium more dense than a vacuum (which, by definition, has no density at all). For example, in water, light travels at about three-fourths its vacuum speed; in glass, it’s around two-thirds. The ratio between the speed of light in a vacuum and its speed in a material is called the refractive index. The index can be changed slightly by altering the chemical or physical structure of the medium. Ordinary glass has a refractive index around 1.5. But by adding a bit of lead, it rises to 1.6. The slower speed, and greater bending, of light waves accounts for the more sprightly sparkle of lead crystal glass.