It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
a significant gravitational lensing bias in high-redshift galaxy samples
Gravitational Lensing: Cosmic Magnifying Lenses Distort View of Distant Galaxies
"In this sense, the very distant universe is like a house of mirrors that you visit at the State Fair -- there may be fewer direct lines-of-sight to a very distant object, and their images may reach us more often via a gravitationally-bent path. What you see is not what you've got!''
We show that gravitational lensing by foreground galaxies will lead to a higher number of galaxies to be counted at redshifts z>8-10. This number may be boosted significantly, by as much as an order of magnitude. If there existed only three galaxies above the detection threshold at redshifts z>10 in the Hubble field-of-view without the presence of lensing, the bias from gravitational lensing may make as many as 10-30 of them visible in the Hubble images," explains Windhorst
Even when astronomers correct for this effect, their measurements still show some scatter, which leads to inaccuracies when calculating distances and therefore the effects of dark energy. Studies looking for ways to make more accurate corrections have had limited success until now.
"We've been looking for this sort of 'second-order effect' for nearly two decades," said Foley.
Foley discovered that after correcting for how quickly Type Ia supernovae faded, they show a distinct relationship between the speed of their ejected material and their color: the faster ones are slightly redder and the slower ones are bluer.
Although ESA did not have funds for FOCAL, Maccone continues to write actively about the mission in papers and books. He’ll also be fascinated to see how the subject is being discussed at the American Astronomical Society’s 217th annual meeting, which concludes today. A team led by Stuart Wyithe (University of Melbourne) has made the case in a presentation and related paper in Nature that as many as 20 percent of the most distant galaxies we can detect appear brighter than they actually are, meaning that lensing has gone from a curious effect to a significant factor in evaluating galaxy surveys to make sure they are accurate.
This is like saying if you're too far to see the people on the beach, and you buy a telescope so you can see the people on the beach, then the telescope increases the number of people on the beach.
Originally posted by XPLodER
gravataional lensing may increse red shift
Originally posted by Arbitrageur
This is like saying if you're too far to see the people on the beach, and you buy a telescope so you can see the people on the beach, then the telescope increases the number of people on the beach.
Originally posted by XPLodER
gravataional lensing may increse red shift
No, it doesn't, it only increases the number of people you can see, the number of people didn't change.
There actually is a change in redshift near the intervening galaxies but it's cancel So gravitational lensing may only increases the number of red shifted objects we see, not the number of objects, and the red shift itself is changed and then changed back in the lens before it gets to us, so it's unchanged.
No, that's wrong.
Originally posted by XPLodER
in this instence the fore ground gravitational lenses are increasing the red shift
The light is blueshifted when it enters the gravitational field, but when it leaves the gravitational field, it is redshifted so it's only changing back to the same redshift it had before it entered the gravitational field.
Although ESA did not have funds for FOCAL, Maccone continues to write actively about the mission in papers and books. He’ll also be fascinated to see how the subject is being discussed at the American Astronomical Society’s 217th annual meeting, which concludes today. A team led by Stuart Wyithe (University of Melbourne) has made the case in a presentation and related paper in Nature that as many as 20 percent of the most distant galaxies we can detect appear brighter than they actually are, meaning that lensing has gone from a curious effect to a significant factor in evaluating galaxy surveys to make sure they are accurate.
We show that gravitational lensing by foreground galaxies will lead to a higher number of galaxies to be counted at redshifts z>8-10. This number may be boosted significantly, by as much as an order of magnitude. If there existed only three galaxies above the detection threshold at redshifts z>10 in the Hubble field-of-view without the presence of lensing, the bias from gravitational lensing may make as many as 10-30 of them visible in the Hubble images. In this sense, the very distant universe is like a house of mirrors that you visit at the State Fair — there may be fewer direct lines-of-sight to a very distant object, and their images may reach us more often via a gravitationally-bent path. What you see is not what you’ve got!”
Even when astronomers correct for this effect, their measurements still show some scatter, which leads to inaccuracies when calculating distances and therefore the effects of dark energy. Studies looking for ways to make more accurate corrections have had limited success until now.
"We've been looking for this sort of 'second-order effect' for nearly two decades," said Foley.
Foley discovered that after correcting for how quickly Type Ia supernovae faded, they show a distinct relationship between the speed of their ejected material and their color: the faster ones are slightly redder and the slower ones are bluer.
a significant gravitational lensing bias in high-redshift galaxy samples
This image layout illustrates how NASA's Spitzer Space Telescope was able to show that a "standard candle" used to measure cosmological distances is shrinking -- a finding that affects precise measurements of the age, size and expansion rate of our universe. Image credit: NASA/JPL-Caltech/Iowa State
› Full image and caption PASADENA, Calif. -- Astronomers have turned up the first direct proof that "standard candles" used to illuminate the size of the universe, termed Cepheids, shrink in mass, making them not quite as standard as once thought. The findings, made with NASA's Spitzer Space Telescope, will help astronomers make even more precise measurements of the size, age and expansion rate of our universe.
Standard candles are astronomical objects that make up the rungs of the so-called cosmic distance ladder, a tool for measuring the distances to farther and farther galaxies. The ladder's first rung consists of pulsating stars called Cepheid variables, or Cepheids for short. Measurements of the distances to these stars from Earth are critical in making precise measurements of even more distant objects. Each rung on the ladder depends on the previous one, so without accurate Cepheid measurements, the whole cosmic distance ladder would come unhinged.
Now, new observations from Spitzer show that keeping this ladder secure requires even more careful attention to Cepheids. The telescope's infrared observations of one particular Cepheid provide the first direct evidence that these stars can lose mass—or essentially shrink. This could affect measurements of their distances.
This calculation was famously performed by astronomer Edwin Hubble in 1924, leading to the revelation that our galaxy is just one of many in a vast cosmic sea. Cepheids also helped in the discovery that our universe is expanding and galaxies are drifting apart.
Everything crumbles in cosmology studies if you don't start up with the most precise measurements of Cepheids possible," said Pauline Barmby of the University of Western Ontario, Canada, lead author of the follow-up Cepheid study published online Jan. 6 in the Astronomical Journal. "This discovery will allow us to better understand these stars, and use them as ever more precise distance indicators."
Dr Mattia Negrello, of the Open University and lead researcher of the study, explained, "Our survey of the sky looks for sources of sub-millimetre light. The big breakthrough is that we have discovered that many of the brightest sources are being magnified by lenses, which means that we no longer have to rely on the rather inefficient methods of finding lenses which are used at visible and radio wavelengths."
Herschel looks at far-infrared light, which is emitted not by stars, but by the gas and dust from which they form. Its panoramic imaging cameras have allowed astronomers to find examples of these lenses by scanning large areas of the sky in far-infrared and sub-millimetre light.
Dr Mattia Negrello, of the Open University and lead researcher of the study, said: "Our survey of the sky looks for sources of sub-millimetre light. The big breakthrough is that we have discovered that many of the brightest sources are being magnified by lenses, which means that we no longer have to rely on the rather inefficient methods of finding lenses which are used at visible and radio wavelengths."
The Herschel-ATLAS images contain thousands of galaxies, most so far away that the light has taken billions of years to reach us. Dr Negrello and his team investigated five surprisingly bright objects in this small patch of sky. Looking at the positions of these bright objects with optical telescopes on the Earth, they found galaxies that would not normally be bright at the far-infrared wavelengths observed by Herschel. This led them to suspect that the galaxies seen in visible light might be gravitational lenses magnifying much more distant galaxies seen by Herschel.