It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
WASHINGTON -- NASA will host a media teleconference at 2 p.m. EDT on Thursday, Oct. 21, to discuss additional findings from NASA's Lunar CRater Observation and Sensing Satellite, or LCROSS, and NASA's Lunar Reconnaissance Orbiter, or LRO, missions.
The results will be featured in six papers published in the Oct. 22 issue of the journal Science. The journal's embargo on these results will be lifted at the start of the telecon. The briefing will focus on the data from:
--The Diviner Lunar Radiometer Experiment which measures surface and subsurface
temperatures from orbit.
-- The Lyman Alpha Mapping Project which is mapping the entire lunar surface in the
far ultraviolet spectrum.
-- The Lunar Exploration Neutron Detector which creates high-resolution maps of
hydrogen distribution and gathers information about the neutron component of the
lunar radiation environment
With a combination of near-infrared, ultraviolet and visible spectrometers onboard the shepherding spacecraft, LCROSS found about 155 kilograms (342 pounds) of water vapor and water ice were blown out of crater and into the LCROSS field of view. From that, Colaprete and his team estimate that approximately 5.6 percent of the total mass inside Cabeus crater (plus or minus 2.9 percent) could be attributed to water ice alone.
Colaprete said finding ice in concentrations – “blocks” of ice — is extremely important. “It means there has to be some kind of process by which it is being enhanced, enriched and concentrated so that you have what is called a critical cluster that allows germ formation and crystalline growth and condensation of ice. So that data point is important because now we have to ask that questions how did it become ice,” he said.
In with the water vapor, the LCROSS team also saw two ‘flavors’ of hydroxyl. “We saw one that was emitting as it if it was just being excited,” Colaprete said, “which means this OH could have come from grains — it could be the adsorbed OH we saw in the M Cubed data, as it was released or liberated from a hot impact and coming up into view. We also see an emission from OH that is called prompt emission, which is unique to the emission you get when OH is formed through photolysis.”
Then came the ‘much more.’ Between the LCROSS instruments, the Lunar Reconnassance Orbiter’s observations – and in particular the LAMP instrument (Lyman Alpha Mapping Project) – the most abundant volatile in terms of total mass was carbon monoxide, then was water, the hydrogen sulfide. Then was carbon dioxide, sulfur dioxide, methane, formaldehyde, perhaps ethylene, ammonia, and even mercury and silver.
“So there’s a variety of different species, and what is interesting is that a number of those species are common to water,” Colaprete said. “So for example the ammonia and methane are at concentrations relative to the total water mass we saw, similar to what you would see in a comet.”