It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Building on previous findings demonstrating that breast cancer cells emit unique electromagnetic signals, engineering researchers at the University of Arkansas have found that a single cancerous cell produces electric signals proportional to the speed at which the cell divides. Their model reveals that heightened movement of ions at the boundary of the cancerous cell produces larger electrical signals.
The findings will help scientists understand the biophysics associated with rapidly dividing breast cancer cells and may contribute to the development of new detection and treatment techniques.
All cells maintain a difference in voltage between their intracellular and extracellular media, said Ahmed Hassan, doctoral student in electrical engineering. Previous work found that MCF-7, a standard breast cancer cell line, hyperpolarizes meaning simply that it increases its membrane voltage in negative polarity during two critical stages prior to cell division. What were trying to do is build a better understanding of how this complicated mechanism works.
Hassan works under the direction of Magda El-Shenawee, associate professor of electrical engineering. In previous work, El-Shenawee created a microwave-imaging system that provides sharp, three-dimensional images of hard objects buried within soft tissue. She was able to do this by transmitting and receiving electromagnetic waves that traveled through soft tissue and bounced off the hard object.
The new direction of El-Shenawees research does not require transmission of electromagnetic waves. Rather, in a process known as passive biopotential diagnosis special sensors only receive electromagnetic waves. They read the unique signals released by activity within and around a growing tumor. As mentioned above, Hassan and El-Shenawee focused on a single cell, which may help researchers recognize abnormalities long before cell aggregates reach the tumor stage. A 1-millimeter tumor comprises tens of thousands of cells.
www.usedphysicsbooks.com...