It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
ScienceDaily (June 20, 2010) — New and detailed observations from the NASA/ESA Hubble Space Telescope have provided insights into two recent events on Jupiter: the mysterious flash of light seen on 3 June and the recent disappearance of the planet's dark Southern Equatorial Belt.
So, yes, it has certainly happened before! On to my last question: what causes it? Sanchez-Lavega told me "Apparently the aerosols and particles forming the South Equatorial Belt, which are dark at visual wavelengths, are overcome by a higher cloud deck of 'white' particles (probably ammonia ice crystals), producing in the region a zone-like aspect. It is also possible that the dark belt particles become coated by fresh ammonia frost on them." But, he added, the South Equatorial Belt isn't the only part of Jupiter that is changeable: "Certainly there are a lot of changes in the reflectivity of the belts and zones of Jupiter, linked to dynamical phenomena that we do not understand."
Originally posted by Republican08
Something about changing atmospheres I think, I'll google it for ya mate.
Originally posted by Gentill Abdulla
www.sciencedaily.com...
ScienceDaily (June 20, 2010) — New and detailed observations from the NASA/ESA Hubble Space Telescope have provided insights into two recent events on Jupiter: the mysterious flash of light seen on 3 June and the recent disappearance of the planet's dark Southern Equatorial Belt.
I am confused can someone please explain to me how a planets belt can be missing? It's not like it's due to the immense pressures of it's atmosphere, and it's flammability ,creating a huge flash then disappeared.
In the Hubble view, a slightly higher altitude layer of white ammonia ice crystal clouds appears to obscure the deeper, darker belt clouds.
Instead the flash is thought to have come from a giant meteor burning up high above Jupiter's cloud tops, which did not plunge deep enough into the atmosphere to explode and leave behind any telltale cloud of debris, as seen in previous Jupiter collisions.