It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
The results provide the first concrete evidence that carbon dioxide (CO2) was more efficiently locked away in the deep ocean during the last ice age, turning the deep sea into a more 'stagnant' carbon repository -- something scientists have long suspected but lacked data to support.
By measuring how much carbon-14 (14C) was in the bottom-dwelling forams' shells, and comparing this with the amount of 14C in the atmosphere at the time, they were able to work out how long the CO2 had been locked in the ocean.
By linking their marine core to the Antarctic ice-cores using the temperature signal recorded in both archives, the team were also able compare their results directly with the ice-core record of past atmospheric CO2 variability.
"Our findings underline the fact that the ocean is a large and dynamic carbon pool. This has implications for proposals to pump carbon dioxide into the deep sea as a way of tackling climate change, for example. Such carbon dioxide would eventually come back up to the surface, and the question of how long it would take would depend on the state of the ocean circulation, as illustrated by the last deglaciation," says Dr Skinner.