It looks like you're using an Ad Blocker.

Please white-list or disable AboveTopSecret.com in your ad-blocking tool.

Thank you.

 

Some features of ATS will be disabled while you continue to use an ad-blocker.

 

Scientists Detect Huge Carbon 'Burp' That Helped End Last Ice Age

page: 1
3

log in

join
share:

posted on May, 27 2010 @ 03:16 PM
link   
A lot of interesting stuff here!


Scientists have found the possible source of a huge carbon dioxide 'burp' that happened some 18,000 years ago and which helped to end the last ice age.


The results provide the first concrete evidence that carbon dioxide (CO2) was more efficiently locked away in the deep ocean during the last ice age, turning the deep sea into a more 'stagnant' carbon repository -- something scientists have long suspected but lacked data to support.


[atsimg]http://files.abovetopsecret.com/images/member/31d9827b4dc7.jpg[/atsimg]


By measuring how much carbon-14 (14C) was in the bottom-dwelling forams' shells, and comparing this with the amount of 14C in the atmosphere at the time, they were able to work out how long the CO2 had been locked in the ocean.
By linking their marine core to the Antarctic ice-cores using the temperature signal recorded in both archives, the team were also able compare their results directly with the ice-core record of past atmospheric CO2 variability.


According to Dr Skinner: "Our results show that during the last ice age, around 20,000 years ago, carbon dioxide dissolved in the deep water circulating around Antarctica was locked away for much longer than today. If enough of the deep ocean behaved in the same way, this could help to explain how ocean mixing processes lock up more carbon dioxide during glacial periods."

Throughout the past two million years (the Quaternary), the Earth has alternated between ice ages and warmer interglacials. These changes are mainly driven by alterations in the Earth's orbit around the sun (the Milankovic theory). But changes in Earth's orbit could only have acted as the 'pace-maker of the ice ages' with help from large, positive feedbacks that turned this solar 'nudge' into a significant global energy imbalance.



"Our findings underline the fact that the ocean is a large and dynamic carbon pool. This has implications for proposals to pump carbon dioxide into the deep sea as a way of tackling climate change, for example. Such carbon dioxide would eventually come back up to the surface, and the question of how long it would take would depend on the state of the ocean circulation, as illustrated by the last deglaciation," says Dr Skinner.


www.sciencedaily.com...



new topics
 
3

log in

join