It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
IceCube, a telescope under construction at the South Pole, will search for neutrinos from the most violent astrophysical sources: events like exploding stars, gamma ray bursts, and cataclysmic phenomena involving black holes and neutron stars. The IceCube telescope is a powerful tool to search for dark matter, and could reveal the new physical processes associated with the enigmatic origin of the highest energy particles in nature. IceCube will encompass a cubic kilometer of ice and uses a novel astronomical messenger called a neutrino to probe the universe.
Neutrinos are produced by the decay of radioactive elements and elementary particles such as pions. Unlike other particles, neutrinos are antisocial, difficult to trap in a detector. It is the feeble interaction of neutrinos with matter that makes them uniquely valuable as astronomical messengers. Unlike photons or charged particles, neutrinos can emerge from deep inside their sources and travel across the universe without interference. They are not deflected by interstellar magnetic fields and are not absorbed by intervening matter. However, this same trait makes cosmic neutrinos extremely difficult to detect; immense instruments are required to find them in sufficient numbers to trace their origin.