It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
A new study shows how rocky planets are formed from the manic swirl of gas and dust that surround a young star, and determines what chemical building blocks are used to construct the planets. Understanding the dynamics and chemistry that create planetary systems can help astronomers in their search for Earth-like planets in the galaxy.
NASA has long followed the water and chemical building blocks of life in the course of space exploration. But most computer simulations that help scientists understand how planetary systems form usually overlooked the chemistry of planets, at least until now.
A new study has looked for the first time at the dynamics and chemistry of how Earth-like planets form. The approach shows how rocky planets form from the manic swirl of gas and dust in the early planetary systems, and also what chemical building blocks existed in the planets that emerged from the chaos.
"If we're looking for Earth-like planets, it'd be nice to know the chemistry we're after," said Jade Bond, a planetary scientist at the University of Arizona in Tucson and a lead author on the study.
Young Earth: More models may soon analyze the chemical profile of young Earth-like planets, as well as the dynamics of how they formed