It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Originally posted by OmegaPoint
Each level of the structure was designed to uphold everything above it, and more, for the lifetime of the building.
Once initiated, the destruction resulted in a pulverized ejection of building material which formed a cascading fountain of debris, so once part way down, there was nothing "falling" on the remaining structure. Half way through the progression of destruction, there was about half less building above the remaining half, yet the pulverization continued, unabated, without any appreciable loss of momentum, all the way to the ground.
I think that those who defend the official story, are insane.
Google Video Link |
Originally posted by GoodOlDave
Personally, I go by the very well written document by MIT materials engineer Thomas Eagar, who gives visuals and easy to understand explanations that support his statements-
MIT materials engineering report
I have yet to encounter one conspiracy theorist who can even come close to refuting any of this material. THAT pretty much says it all.
Thus, the fact that there were 90,000 L of jet fuel on a few floors of the WTC does not mean that this was an unusually hot fire. The temperature of the fire at the WTC was not unusual, and it was most definitely not capable of melting steel.
Soot is generated by incompletely burned fuel; hence, the WTC fire was fuel rich—hardly surprising with 90,000 L of jet fuel available.
As the joists on one or two of the most heavily burned floors gave way and the outer box columns began to bow outward, the floors above them also fell. The floor below (with its 1,300 t design capacity) could not support the roughly 45,000 t of ten floors (or more) above crashing down on these angle clips.
This started the domino effect that caused the buildings to collapse within ten seconds
First, the building is not solid; it is 95 percent air and, hence, can implode onto itself.
No designer of the WTC anticipated, nor should have anticipated, a 90,000 L Molotov cocktail on one of the building floors.
This was a very large and rapidly progressing fire (very high heat but not unusually high temperature).
However, the building was not able to withstand the intense heat of the jet fuel fire.
While it was impossible for the fuel-rich, diffuse-flame fire to burn at a temperature high enough to melt the steel, its quick ignition and intense heat caused the steel to lose at least half its strength and to deform, causing buckling or crippling. This weakening and deformation caused a few floors to fall, while the weight of the stories above them crushed the floors below, initiating a domino collapse.
It would be impractical to design buildings to withstand the fuel load induced by a burning commercial airliner.
Originally posted by GoodOlDave
I have yet to encounter one conspiracy theorist who can even come close to refuting any of this material. THAT pretty much says it all.
Originally posted by OmegaPoint
Originally posted by esdad71
reply to post by CaptainAmerica2012
So you are saying that CDI bought down the WTC?
Why Did the World Trade Center Collapse? Science, Engineering, and Speculation
The fire is the most misunderstood part of the WTC collapse. Even today, the media report (and many scientists believe) that the steel melted. It is argued that the jet fuel burns very hot, especially with so much fuel present. This is not true.
Part of the problem is that people (including engineers) often confuse temperature and heat. While they are related, they are not the same. Thermodynamically, the heat contained in a material is related to the temperature through the heat capacity and the density (or mass). Temperature is defined as an intensive property, meaning that it does not vary with the quantity of material, while the heat is an extensive property, which does vary with the amount of material. One way to distinguish the two is to note that if a second log is added to the fireplace, the temperature does not double; it stays roughly the same, but the size of the fire or the length of time the fire burns, or a combination of the two, doubles. Thus, the fact that there were 90,000 L of jet fuel on a few floors of the WTC does not mean that this was an unusually hot fire. The temperature of the fire at the WTC was not unusual, and it was most definitely not capable of melting steel.
In combustion science, there are three basic types of flames, namely, a jet burner, a pre-mixed flame, and a diffuse flame. A jet burner generally involves mixing the fuel and the oxidant in nearly stoichiometric proportions and igniting the mixture in a constant-volume chamber. Since the combustion products cannot expand in the constant-volume chamber, they exit the chamber as a very high velocity, fully combusted, jet. This is what occurs in a jet engine, and this is the flame type that generates the most intense heat.
In a pre-mixed flame, the same nearly stoichiometric mixture is ignited as it exits a nozzle, under constant pressure conditions. It does not attain the flame velocities of a jet burner. An oxyacetylene torch or a Bunsen burner is a pre-mixed flame.
But it is very difficult to reach this maximum temperature with a diffuse flame. There is nothing to ensure that the fuel and air in a diffuse flame are mixed in the best ratio. Typically, diffuse flames are fuel rich, meaning that the excess fuel molecules, which are unburned, must also be heated. It is known that most diffuse fires are fuel rich because blowing on a campfire or using a blacksmith’s bellows increases the rate of combustion by adding more oxygen. This fuel-rich diffuse flame can drop the temperature by up to a factor of two again. This is why the temperatures in a residential fire are usually in the 500°C to 650°C range.2,3 It is known that the WTC fire was a fuel-rich, diffuse flame as evidenced by the copious black smoke. Soot is generated by incompletely burned fuel; hence, the WTC fire was fuel rich—hardly surprising with 90,000 L of jet fuel available. Factors such as flame volume and quantity of soot decrease the radiative heat loss in the fire, moving the temperature closer to the maximum of 1,000°C. However, it is highly unlikely that the steel at the WTC experienced temperatures above the 750–800°C range. All reports that the steel melted at 1,500°C are using imprecise terminology at best.
Some reports suggest that the aluminum from the aircraft ignited, creating very high temperatures. While it is possible to ignite aluminum under special conditions, such conditions are not commonly attained in a hydrocarbon-based diffuse flame. In addition, the flame would be white hot, like a giant sparkler. There was no evidence of such aluminum ignition, which would have been visible even through the dense soot.
Originally posted by Valhall
First, the building is not solid; it is 95 percent air and, hence, can implode onto itself.
Uhhh...hmmm. Isn't he contradicting himself here? He just went from 10 full floors (see above) smacking down in unison against a lower floor to "it's not solid" "95 percent air". I can't rectify those two statements.
The towers were designed and built in the mid-1960s through the early 1970s. They represented a new approach to skyscrapers in that they were to be very lightweight and involved modular construction methods in order to accelerate the schedule and to reduce the costs.
To a structural engineer, a skyscraper is modeled as a large cantilever vertical column. Each tower was 64 m square, standing 411 m above street level and 21 m below grade. This produces a height-to-width ratio of 6.8. The total weight of the structure was roughly 500,000 t, but wind load, rather than the gravity load, dominated the design. The building is a huge sail that must resist a 225 km/h hurricane. It was designed to resist a wind load of 2 kPa—a total of lateral load of 5,000 t.
In order to make each tower capable of withstanding this wind load, the architects selected a lightweight “perimeter tube” design consisting of 244 exterior columns of 36 cm square steel box section on 100 cm centers (see Figure 3). This permitted windows more than one-half meter wide. Inside this outer tube there was a 27 m × 40 m core, which was designed to support the weight of the tower. It also housed the elevators, the stairwells, and the mechanical risers and utilities. Web joists 80 cm tall connected the core to the perimeter at each story. Concrete slabs were poured over these joists to form the floors. In essence, the building is an egg-crate construction that is about 95 percent air, explaining why the rubble after the collapse was only a few stories high.