It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
If I'm not mistaken, the #1 Gaussian candidate to date was at:
1420.602708
1420.602830
and
1420.602932 Mhz
Originally posted by kegs
Did you read all the posts in this thread? That's what I just said!
He said those signals were the number one Gaussian candidates to date, can anyone confirm what that means?
[Edited on 3-5-2004 by kegs]
Originally posted by Durandal
When the areceibo radio telescope comes across a signal it's power level will appear in a bell shaped curve (a gaussian.) As it scans the area of sky where the signal originated the signal will start out weak and gradually increase to its peak and then decrease to normal background noise levels. Seti@home uses gaussian curve fitting to determine if the signal is not local, because a local signal will occur as a flat power level.
-Durandal
From the date on the RADAR clip this happened May 1 so if this is for real they should be going through these steps right now.
Originally posted by EmbryonicEssence
Durandal, I just meant: Originating, located, or occurring outside Earth or its atmosphere - not the intelligent extraterrestrial life part. :-D
I'm curious though, do you know of how many times there has been a true repeating pattern, that maybe lasted just a few seconds, and was truly extra-terrestrial in origin (one that could have been artificially made)?
from www.setileague.org...
Modern SETI was born in 1959, with the publication in Nature of a short paper by Cocconi and Morrison [3] proposing a search of nearby Sun-like stars, near the 1420 MHz neutral hydrogen frequency, for artificially generated signals. Unbeknownst to the authors, even as they wrote their paper Frank Drake was preparing to perform the very experiment which they were proposing. Project Ozma searched only two stars, at that single frequency, for two months during the summer of 1960. During the succeeding years, several dozen other SETI experiments have been performed, many still concentrating on the hydrogen line as a likely frequency for interstellar communications.
The longest running of these is the Ohio State sky survey, which has been continuously operational since 1973. It was the Ohio State Radio Observatory which on August 15, 1977 detected the most tantalizing and promising candidate signal to date, the so-called "Wow!" signal. The computer printout of this historic signal is shown in Figure 1.
The "Wow! received its name from the marginal note on the computer printout, penned by SETI volunteer Dr. Jerry Ehman. "I came across the strangest signal I had ever seen, and immediately scribbled 'Wow!' next to it," Ehman explained. "At first, I thought it was an earth signal reflected from space debris, but after I studied it further, I found that couldn't be the case." [4]
The letters and numbers in the printout are today widely misinterpreted as a message. "What does the progression 6EQUJ5 actually stand for?" asked one SETI enthusiast. "A sequence in need of completion? A matrix in need of expanding? A computer malfunction? The ASCII equivalent to a binary code?" [5]
Let me emphasize that the "Wow!" sequence itself is not a message. What was received appeared to be a CW (unmodulated) signal. The numbers and letters in the much-reproduced computer printout are merely a time-series representation of the signal amplitude, as received at the Big Ear radiotelescope. Specifically, the symbols represent the number of standard deviations by which the received signal exceeded average background noise, on a scale of 0 to 35. So a 0 means no stronger than background noise, 1 is one sigma above noise, 9 means nine sigma above noise, an A would be ten units, and U (the strongest peak of the actual signal) is 30 standard deviations above the mean background noise in the receiver. If you graph the sequence as amplitude values over time you get roughly a Gaussian distribution, consistent with the antenna pattern of the Big Ear in drift-scan mode. The data set depicts signal amplitude over both frequency and time.
Figure 2 shows just such a graph of the output of the Ohio State 50-channel receiver during the transit through the antenna pattern of the "Wow!" source. Time is plotted horizontally, amplitude vertically, and frequency in the depth axis. The time increments are twelve seconds per sample. Each of the channels is 10 kHz wide; thus, a half MHz surrounding the hydrogen line is depicted. Note that the signal rises almost 15 dB above the background noise, in a single channel, then falls back into the noise, its amplitude pattern exactly coinciding with the known beamwidth pattern of the dish (including its feed-induced skew, and coma sidelobes).
From the "Wow!" signal's temporal correspondence to the antenna pattern, we know that its source was moving with the background stars. From its Doppler shift signature (the local oscillator of the receiver was being chirped at a rate which corresponds to the Earth's motion with respect to the Galactic center of rest) we can eliminate terrestrial interference, aircraft or spacecraft from consideration. The antenna coordinates indicated that the signal was coming from no known nearby sun-like star, though at any time, in any direction, the antenna pattern encompasses on average about half a dozen distant stars. Most significantly, though over a hundred follow-on studies of the same region of the sky were performed, from several different radio observatories, the signal never repeated. [6]
Of course, it should not have. Consider that the Big Ear radiotelescope at the Ohio State Radio Observatory is extremely narrow in beamwidth, viewing just one part in a million of the sky at a given time. That means if you are listening on exactly the right frequency, at exactly the instant when The Call arrives, there's still a 99.9999% chance you'll be pointed the wrong way. And if we imagine that the "Wow!" signal emanated from a similar high gain antenna, which (let us assume) illuminates only one millionth of the sky, what are the chances the two antennas will be pointed at each other at the same time? That's easy, says the statistician: (1e-6) squared equals (1e-12).
But wait, if we know the direction from which the signal emanated, and concentrate our antennas there, we've removed one factor of (1e-6), and we're back to million-to-one odds. Even still, we've only looked in that direction for a total of a few tens of hours. Not only have we not yet scratched the surface, we haven't even felt the itch.