posted on Apr, 11 2007 @ 05:01 AM
honeybees and Sunspots may be interacting in one of the most unwatched ballets since television was created. Metaphorically speaking of course:
Imagine an aquarium containing a fish. Imagine also that you are unable to see the aquarium directly and your knowledge about it and what it
contains comes from two television cameras, one directed at the aquarium’s front and the other directed at its side. As you stare at the two
television monitors, you might assume that the fish on each of the screens are separate entities. After all, because the cameras are set at different
angles, each of the images will be slightly different. But as you continue to watch the two fishes, you will eventually become aware that there is a
certain relationship between them. When one turns, the other also makes a slightly different but corresponding turn; when one faces the front, the
other always faces toward the side. If you remain unaware of the full scope of the situation, you might even conclude that the fish must be
instantaneously communicating with one another, but this is clearly not the case.1
If there are processes in this universe of which we are unaware of the full scope, perhaps the only way to observe them is using the multi-camera
metaphor. In this ballet - which has the tragedy of the prospect of agricultural collapse, the triumph of the idea of biological interaction with
quantum processes, and the drama of far away forces dancing within our presences - we can become part of the dance as we expertly shift our camera
views like an experienced television producer. In the process, a mystery may be solved, one making many of us (and perhaps not enough of us) nervous
lately.
Camera One: Honeybees
The first reports began in November of bees mysteriously disappearing. Not just one or two, but entire colonies of tens of thousands of bees at a
time. As temperatures have warmed and it has become safe to open hives, the extent of losses is grave:
In Michigan, Terry Klein, vice president of the Michigan Beekeepers Association and a commercial beekeeper, said reports of huge losses are beginning
to arrive.
“One beekeeper started with 1,500 hives and had only 500 colonies left,” Klein said. “Over three or four more weeks, he lost 70 percent of
those.”2
Assuming a winter population of approximately 20,000 bees, this would leave losses for one beekeeper at 27 million bees! The losses have been
widespread in North America, with some beekeepers loosing up to 80 percent of their hives. Over 400 reports have come in from at least 22 states so
far. Given the extent of losses, the most puzzling thing is the lack of dead bees:
Although the bodies of dead bees often are littered around a hive, sometimes carried out of the hive by worker bees, no bee remains are typically
found around colonies struck by the mystery ailment. Scientists assume these bees have flown away from the hive before dying.
27 million dead bees in a relatively small area should leave some physical evidence. Unless there is an extremely efficient physical process (like a
phantom bee-eater) or a much wider geographical distribution of bee carcasses upon their demise, a very strange phenomenon is at work.
Curiously, it has been noted that something similar happened in North America approximately 50 years ago.
I’m a hundred miles behind myself
- Beck, Milk and Honey
Camera Two: Sunspots
Sunspots follow an approximate 11-year cycle, corresponding to increases in solar activity. This solar activity causes geomagnetic effects during the
peaks, but effects on earth’s magnetic field also occur during the minimums. Using these observations, scientists have predicted that the next solar
maximum, expected to peak in 2010, could be the most intense ever.
The measurement that allows the the prediction is called Inter-hour Variability. Combined with another observation on the sun, Physicist David
Hathaway noticed a correlation that allowed prediction of solar activity 6-8 years later. In his observations, the last time something similar to the
IHV measurements he sees today happened was about 50 years ago.
I feel it coming and I’ve got to get out of it’s way
- Nine Inch Nails, Sunspots
Watching The Dance
Aside from the fact that most children would use the same crayons to draw both sunspots and honeybees, how could they two be related?
Barbara Shipman, mathematician and daughter of a bee researcher, first noticed something peculiar about the dance bees use to describe where pollen
sources are located to other bees. Observed over 40 years by Karl von Firsh, these movements seemed an overly complex way to convey information,
especially in insect behavior. No one had yet made sense of the dance the bee scouts performed on returning to a hive, but one thing was clear. All of
the dance was based on a triangulation of the hive, the food source, and the sun.
Shipman first studied bees because her father left the bee books in her room, and later studied them in her freshman year as a biochemistry major. It
was not until she delved into mathematics that she penetrated the enigmatic mystery of the dance. She was studying flag manifolds, mathematical
constructs used in projecting multi-dimensional phenomena into fewer dimensions when something from childhood became clear:
One day Shipman was busy projecting the six-dimensional residents of the flag manifold onto two dimensions. The particular technique she was using
involved first making a two-dimensional outline of the six dimensions of the flag manifold. This is not as strange as it may sound. When you draw a
circle, you are in effect making a two-dimensional outline of a three- dimensional sphere. As it turns out, if you make a two-dimensional outline of
the six-dimensional flag manifold, you wind up with a hexagon. The bee’s honeycomb, of course, is also made up of hexagons, but that is purely
coincidental. However, Shipman soon discovered a more explicit connection. She found a group of objects in the flag manifold that, when projected onto
a two-dimensional hexagon, formed curves that reminded her of the bee’s recruitment dance. The more she explored the flag manifold, the more curves
she found that precisely matched the ones in the recruitment dance. I wasn’t looking for a connection between bees and the flag manifold, she says.
I was just doing my research. The curves were nothing special in themselves, except that the dance patterns kept emerging.5
Since then, researchers have discovered that things such as the polarization of the light of the sun and local variations of the earth’s magnetic
field affect the components of the dance, suggesting bees have sensitivities that would require re-writing our biology, physics and cosmology texts
from scratch:
There is some research to support the view that bees are sensitive to effects that occur only on a quantum-mechanical scale. One study exposed
bees to short bursts of a high-intensity magnetic field and concluded that the bees’ response could be better explained as a sensitivity to an
effect known as nuclear magnetic resonance, or nmr, an acronym commonly associated with a medical imaging technique. nmr occurs when an
electromagnetic wave impinges on the nuclei of atoms and flips their orientation. nmr is considered a quantum mechanical effect because it takes place
only if each atom absorbs a particular size packet, or quantum, of electromagnetic energy.
If this were not enough, the results imply that bees can perceive quarks, thereby interacting with the quantum world without disturbing it in the ways
both observed and predicted by quantum theory. And this perception would have to extend to the perception of quarks not as coherent structures, but as
fields. In other words, bees may be able to perceive the unobserved quantum fields of zero-point energy, the much-debated property from which all of
the phenomenal world may emerge in the eternal quantum moment.
The Stage: Sun and Earth
Other than the coincidence that a similar disappearance of bees and the precursor to a strong sunspot cycle both occurred at the same time, just as is
happening now, how could such revelations be related to the solar cycle?
Science is still at a loss to explain the power of the sun’s magnetic field, or the Solar Dynamo. A set of observations seem all to relate, yet the
observations cannot be explained individually or together:
A successful model for the solar dynamo must explain several observations: 1) the 11-year period of the sunspot cycle, 2) the equator-ward drift
of the active latitude as seen in the butterfly diagram, 3) Hale’s polarity law and the 22-year magnetic cycle, 4) Joy’s law for the observed tilt
of sunspot groups and, 5) the reversal of the polar magnetic fields near the time of cycle maximum as seen in the magnetic butterfly diagram.7
Taking a cue from the bees, we can look at spin as a common component. Spin is a property of quantum ‘particles’ that can be manipulated, and is a
fundamental component of both NMR and quantum computers. Spin is complex conceptually, especially given the fact that the most simple description of
the spin of Fermions (the ‘particles’ that make up matter as we know it) is 1/2. This means that if you could hold one of these ‘particles’
and mark a spot on it with a Sharpie, you would have to turn it 720 degrees around in your hand to see the mark once again. Quarks, the ‘particle’
bees may interact with, also have spin 1/2.
The concept of spherical harmonics is used to visualize the effects of spin. Using spherical harmonics, the sun can also be visualized as a
six-dimensional body with three rotational components. In another simple visualization, a two-dimensional flatlander would have a great deal of
difficulty explaining an eight-ball intersecting her space while rotating both horizontally and vertically. It would seem to her that the disc she
observed (the portion of the eight-ball intersecting with her plane) had a spin of 1/2. If she then used spherical harmonics to describe the object,
she would be able to make some mathematical predictions about its structure and behavior, even without having an ability to visualize or perceive the
third dimension directly.
In our visualization of the sun, such a correlation of observable phenomena should be striking if indeed the sun is a six dimensional structure: