It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Uh, not to pop your bubble, but cars don't HAVE turbines.
At any rate, if what you mean to say is, we should create more efficient vehicles, that's a good idea...
But you can't magically increase efficiency to the point that you no longer need fuel.
Originally posted by Gear
No, not magically, but then that depends on what your definition of fuel is.
You can increase your efficiency on a bike by using gears, as apposed to not using gears.
Yet no excellence of design, or choice of gears, will make the bike pedal itself. That's what I'm saying.
There are lots of examples of re-using waste energy, however, you have to remember that most waste energy is low-level heat. There are some tacky bits of thermodynamics that make waste energy less and less worth capturing as it goes down the scale....
...At some point every energy source in the world ends up as low-level waste heat.
“Just what is your new invention?” I asked.
“I have accomplished what mechanical engineers have been dreaming about ever since the invention of steam power,” replied Dr. Tesla. “That is the perfect rotary engine. It happens that I have also produced an engine which will give at least twenty-five times as much power to a pound of weight as the lightest weight engine of any kind that has yet been produced.
“In doing this I have made use of two properties which have always been known to be possessed by all fluids, but which have not heretofore been utilized. These properties are adhesion and viscosity.
“Put a drop of water on a metal plate. The drop will roll off, but a certain amount of the water will remain on the plate until it evaporates or is removed by some absorptive means. The metal does not absorb any of the water, but the water adheres to it.
“The drop of water may change its shape, but until its particles are separated by some external power it remains intact. This tendency of all fluids to resist molecular separation is viscosity. It is especially noticeable in the heavier oils.
“It is these properties of adhesion and viscosity that cause the “skin friction” that impedes a ship in its progress through the water or an aeroplane in going through the air. All fluids have these qualities—and you must keep in mind that air is a fluid, all gases are fluids, steam is fluid. Every known means of transmitting or developing mechanical power is through a fluid medium.
“Now, suppose we make this metal plate that I have spoken of circular in shape and mount it at its centre on a shaft so that it can be revolved. Apply power to rotate the shaft and what happens? Why, whatever fluid the disk happens to be revolving in is agitated and dragged along in the direction of rotation, because the fluid tends to adhere to the disk and the viscosity causes the motion given to the adhering particles of the fluid to be transmitted to the whole mass. Here, I can show you better than tell you.”
Dr. Tesla led the way into an adjoining room. On a desk was a small electric motor and mounted on the shaft were half a dozen flat disks, separated by perhaps a sixteenth of an inch from one another, each disk being less than that in thickness. He turned a switch and the motor began to buzz. A wave of cool air was immediately felt.
“There we have a disk, or rather a series of disks, revolving in a fluid—the air,” said the inventor. “You need no proof to tell you that the air is being agitated and propelled violently. If you will hold your hand over the centre of these disks—you see the centres have been cut away—you will feel the suction as air is drawn in to be expelled from the peripheries of the disks.
“Now, suppose these revolving disks were enclosed in an air tight case, so constructed that the air could enter only at one point and be expelled only at another—what would we have?"
“You'd have an air pump,” I suggested.
“Exactly--an air pump or blower,” said Dr. Tesla.
“There is one now in operation delivering ten thousand cubic feet of air a minute. “Now, come over here.”
He stepped across the hall and into another room, where three or four draughtsmen were at work and various mechanical and electrical contrivances were scattered about. At one side of the room was what appeared to be a zinc or aluminum tank, divided into two sections, one above the other, while a pipe that ran along the wall above the upper division of the tank was connected with a little aluminum case about the size and shape of a small alarm clock. A tiny electric motor was attached to a shaft that protruded from one side of the aluminum case. The lower division of the tank was filled with water.
“Inside of this aluminum case are several disks mounted on a shaft and immersed in a fluid, water,” said Dr. Tesla. “From this lower tank the water has free access to the case enclosing the disks. This pipe leads from the periphery of the case. I turn the current on, the motor turns the disks and as I open this valve in the pipe the water flows.”
He turned the valve and the water certainly did flow. Instantly a stream that would have filled a barrel in a very few minutes began to run out of the pipe into the upper part of the tank and thence into the lower tank.
“This is only a toy,” said Dr. Tesla. “There are only half a dozen disks— ‘runners,’ I call them—each less than three inches in diameter, inside of that case. They are just like the disks you saw on the first motor—no vanes, blades or attachments of any kind. Just perfectly smooth, flat disks revolving in their own planes and pumping water because of the viscosity and adhesion of the fluid. One such pump now in operation, with eight disks, eighteen inches in diameter, pumps four thousand gallons a minute to a height of 360 feet.”
We went back into the big, well lighted office. I was beginning to grasp the new Tesla principle.
“Suppose now we reversed the operation,” continued the inventor. “You have seen the disks acting as a pump. Suppose we had water, or air under pressure, or steam under pressure, or gas under pressure, and let it run into the case in which the disks are contained—what would happen?"
“The disks would revolve and any machinery attached to the shaft would be operated—you would convert the pump into an engine,” I suggested.
“That is exactly what would happen—what does happen,” replied Dr. Tesla. “It is an engine that does all that engineers have ever dreamed of an engine doing, and more. Down at the Waterside power station of the New York Edison Company, through their courtesy, I have had a number of such engines in operation. In one of them the disks are only nine inches in diameter and the whole working part is two inches thick. With steam as the propulsive fluid it develops 110-horse power, and could do twice as much.”
“You have got what Professor Langley was trying to evolve for his flying machine—an engine that will give a horse power for a pound of weight,” I suggested.
Ten Horse Power to the Pound.
“I have got more than that,” replied Dr. Tesla. “I have an engine that will give ten horse power to the pound of weight. That is twenty-five times as powerful as the lightest weight engine in use today. The lightest gas engine used on aeroplanes weighs two and one-half pounds to the horse power. With two and one-half pounds of weight I can develop twenty-five horse power.”
“That means the solution of the problem of flying,” I suggested.
“Yes, and many more,” was the reply. “The applications of this principle, both for imparting power to fluids, as in pumps, and for deriving power from fluids, as in turbine, are boundless. It costs almost nothing to make, there is nothing about it to get out of order, it is reversible—simply have two ports for the gas or steam, to enter by, one on each side, and let it into one side or other. There are no blades or vanes to get out of order—the steam turbine is a delicate thing.”
I remembered the bushels of broken blades that were gathered out of the turbine casings of the first turbine equipped steamship to cross the ocean, and realized the importance of this phase of the new engine.
“Then, too,” Dr. Tesla went on, “there are no delicate adjustments to be made. The distance between the disks is not a matter of microscopic accuracy and there is no necessity for minute clearances between the disks and the case. All one needs is some disks mounted on a shaft, spaced a little distance apart and cased so that a fluid can enter at one point and go out at another. If the fluid enters at the centre and goes out at the periphery it is a pump. If it enters at the periphery and goes out at the center it is a motor.
“Coupling these engines in series, one can do away with gearing in machinery. Factories can be equipped without shafting. The motor is especially adapted to automobiles, for it will run on gas explosions as well as on steam. The gas or steam can be let into a dozen ports all around the rim of the case if desired. It is possible to run it as a gas engine with a continuous flow of gas, gasoline and air being mixed and the continuous combustion causing expansion and pressure to operate the motor. The expansive power of steam, as well as its propulsive power, can be utilized as in a turbine or a reciprocating engine. By permitting the propelling fluid to move along the lines of least resistance a considerably larger proportion of the available power is utilized.
“As an air compressor it is highly efficient. There is a large engine of this type now in practical operation as an air compressor and giving remarkable service. Refrigeration on a scale hitherto never attempted will be practical, through the use of this engine in compressing air, and the manufacture of liquid air commercially is now entirely feasible.
“With a thousand horse power engine, weighing only one hundred pounds, imagine the possibilities in automobiles, locomotives and steamships. In the space now occupied by the engines of the Lusitania twenty-five times her 80,000 horse power could be developed, were it possible to provide boiler capacity sufficient to furnish the necessary steam.”
“And it makes the aeroplane practical,” I suggested.
“Not the aeroplane, the flying machine,” responded Dr. Tesla. “Now you have struck the point in which I am most deeply interested—the object toward which I have been devoting my energies for more than twenty years—the dream of my life. It was in seeking the means of making the perfect flying machine that I developed this engine.
“Twenty years ago I believed that I would be the first man to fly; that I was on the track of accomplishing what no one else was anywhere near reaching. I was working entirely in electricity then and did not realize that the gasoline engine was approaching a perfection that was going to make the aeroplane feasible. There is nothing new about the aeroplane but its engine, you know.
“What I was working on twenty years ago was the wireless transmission of electric power. My idea was a flying machine propelled by an electric motor, with power supplied from stations on the earth. I have not accomplished this as yet, but am confident that I will in time.
Originally posted by iori_komei
You can have dvices that can provide large sums of energy for a
very long time, but you can't have a completely infinite supply source.
Originally posted by UofCinLA
Did EVERYONE sleep thru high school physics..?? Newton, thermodynamics - ring a bell..??
As for 300mpg cars - calculate the energy content of 1 gal of gas. Now work back and compute how much mass that much energy can push for 300 miles at say 30mph. I'll even let you asssume a level surface with no aerodynamic drag and a 100% conversion of the gas energy to work. No anti-mater or nuclear though and you need to go at least 30mph - stick with internal combustion or turbine.... Good luck....