It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Originally posted by IronMan
Of course, if an object is small enough, it can pass through another 'solid'
object by passing between the spaces from atom to atom. Is that it?
I know I'm playing catch-up here.
Originally posted by Yarium
By space, I mean emptiness - utter and complete vacuum, a void of nothingness.
Of course, stuff will go through there. Like photons, neutrinos, etc - but it is remarkably empty of anything at all.
Originally posted by Yarium
Actually, the problem with your thinking is that you're thinking on the basic levels. You're thinking the way people USED to think about light. It wasn't until Einstein's General Theory that he talked about the problems with trying to achieve light speed and the warping effect it has.
But, just to point out to you, they've done experiments on time dialation. They've created INCREDIBLY precise clocks that can measure millionths of seconds of time. They put two of these clocks in sinc, and then placed one of them in orbit (either on a satellite or on the Space Station - I believe the latter).
When they brought the one that was in orbit back and compared it to the one that stayed on earth, they discovered that the two clocks were ACTUALLY off-sinc, something that would have been considered impossible before Einstein (had such clocks existed back then). This is because the Space Station / satellites orbit the earth at pretty high speeds. Even though they're minute compared to the speed of light, any movement will experience these kinds of time dialations.
Since it worked and is observable at the small scale, we must assume the same is true of the large scale, and that approaching the speed of light becomes more and more difficult the closer you get there.
So 55 000 000mps is the universal speed limit for objects with mass. Of course, objects without mass don't necessarily follow this quite the same. Such as gravity. What's the "speed of gravity"? If a planet moves through a solar system, at what speed does it's change in position change the gravitational affects on other planets? Is it instantaneous? Or is there a graviton that carries it? or perhaps a "gravity wave"? If these things exist, is there then a way to control it?
Originally posted by Yarium
You're quite right there IronMan. If it doesn't give off any light of its own, it is considered "dark". Something which also does not reflect light would equally be considered dark.
Now, apply this to the idea of Dark Energy which has been thrown around the scientific community at large. It would be a type of energy that is not easily observable. In all truth, I think Dark Energy is a load of crock, but it has a number of devote believers, and so needs to be investigated.
Originally posted by Yarium
FYI, Electromagnetic Radiation IS light. It also can be X-rays, microwaves, Infrared, Ultraviolet, Cosmic Rays, Radio Waves, etc.
What do scientists look for when they search for dark matter? We cannot see or touch it: its existence is implied. Possibilities for dark matter range from tiny subatomic particles weighing 100,000 times less than an electron to black holes with masses millions of times that of the sun (9). The two main categories that scientists consider as possible candidates for dark matter have been dubbed MACHOs (Massive Astrophysical Compact Halo Objects), and WIMPs (Weakly Interacting Massive Particles). Although these acronyms are amusing, they can help you remember which is which. MACHOs are the big, strong dark matter objects ranging in size from small stars to super massive black holes (1). MACHOs are made of 'ordinary' matter, which is called baryonic matter. WIMPs, on the other hand, are the little weak subatomic dark matter candidates, which are thought to be made of stuff other than ordinary matter, called non-baryonic matter. Astronomers search for MACHOs and particle physicists look for WIMPs.
Astronomers and particle physicists disagree about what they think dark matter is. Walter Stockwell, of the dark matter team at the Center for Particle Astrophysics at U.C. Berkeley, describes this difference. "The nature of what we find to be the dark matter will have a great effect on particle physics and astronomy. The controversy starts when people made theories of what this matter could be--and the first split is between ordinary baryonic matter and non-baryonic matter" (10). Since MACHOs are too far away and WIMPs are too small to be seen, astronomers and particle physicists have devised ways of trying to infer their existence. eclipse.net
This is why a planet is considered Dark Matter. It's "dark" because we can't see it through the electro-magnetic spectrum (of which visible light is a part of).
Originally posted by NeonHelmet
How will you explain that i just saw mars 4 days ago, from my balkony? if it cant reflect light? how did i see it?
[edit on 12-1-2006 by NeonHelmet]
Originally posted by IronMan
Please keep this discussion up, my son and I are learning a lot!
Do black holes REALLY REALLY exist?
Is there any proof that other dimensions exist?
Finally, is there an edge to the universe?