It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
originally posted by: Adlow75yo
a reply to: BrotherKinsMan
Everything is just light and sound. Time doesnt exist.
originally posted by: ButterfliesAndPonies
a reply to: dothedew
It totally does. Half-life is proof.
It occurs if you measure it or not. The progress of time is change, without time everything would be stagnant. And it isn't with watch or without, everything changes.
The concept of the arrow of time points in the direction of increasing entropy.
Lets just say in the context of the universe, at a cosmological scale, discussions about entropy and the second law become more shall we say subtle.
As it turns out, it takes 26 dimensionless constants to describe the Universe as simply and completely as possible, which is quite a small number. Even at that, they don't give us everything, because there are some important things that are fundamentally still unknown about our Universe.
A particularly interesting question was whether the set of variables was unique for every system, or whether a different set was produced each time the program was restarted. “I always wondered, if we ever met an intelligent alien race, would they have discovered the same physics laws as we have, or might they describe the universe in a different way?” said Lipson. “Perhaps some phenomena seem enigmatically complex because we are trying to understand them using the wrong set of variables.” I
n the experiments, the number of variables was the same each time the AI restarted, but the specific variables were different each time. So yes, there are indeed alternative ways to describe the universe and it is quite possible that our choices aren’t perfect.
According to the researchers, this sort of AI can help scientists uncover complex phenomena for which theoretical understanding is not keeping pace with the deluge of data—areas ranging from biology to cosmology. “While we used video data in this work, any kind of array data source could be used—radar arrays, or DNA arrays, for example,” explained Kuang Huang PhD ’22, who coauthored the paper.
The work is part of Lipson and Fu Foundation Professor of Mathematics Qiang Du’s decades-long interest in creating algorithms that can distill data into scientific laws. Past software systems, such as Lipson and Michael Schmidt’s Eureqa software, could distill freeform physical laws from experimental data, but only if the variables were identified in advance. But what if the variables are yet unknown?