It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
A new map of dark matter in the local universe reveals several previously undiscovered filamentary structures connecting galaxies. The map, developed using machine learning, could enable studies about the nature of dark matter as well as about the history and future of our local universe.
A new map of dark matter in the local universe reveals several previously undiscovered filamentary structures connecting galaxies. The map, developed using machine learning by an international team including a Penn State astrophysicist, could enable studies about the nature of dark matter as well as about the history and future of our local universe.
For example, it has been suggested that the Milky Way and Andromeda galaxies may be slowly moving toward each other, but whether they may collide in many billions of years remains unclear. Studying the dark matter filaments connecting the two galaxies could provide important insights into their future.
“Because dark matter dominates the dynamics of the universe, it basically determines our fate," said Jeong. "So we can ask a computer to evolve the map for billions of years to see what will happen in the local universe. And we can evolve the model back in time to understand the history of our cosmic neighborhood."
Dark matter is an elusive substance that makes up 80% of the universe. It also provides the skeleton for what cosmologists call the cosmic web, the large-scale structure of the universe
A radio telescope on the moon’s far side would have many advantages over a similar instrument built on Earth. While large radio telescopes do exist on Earth (the biggest one, currently, is FAST in China), our ionosphere blocks Earth-bound radio telescopes from seeing wavelengths longer than 33 feet (10 meters). The moon’s lack of an atmosphere will allow the longer radio wavelengths to reach a telescope built on the moon. And the far side of the moon is an excellent site for a radio telescope. That’s because the moon itself will block the radio chatter emitted from Earth. These advantages will open up a range of wavelengths that astronomers have not been able to explore.
Lunar Crater Radio Telescope team member Joseph Lazio of JPL said:
While there were no stars, there was ample hydrogen during the universe’s Dark Ages, hydrogen that would eventually serve as the raw material for the first stars. With a sufficiently large radio telescope off Earth, we could track the processes that would lead to the formation of the first stars, maybe even find clues to the nature of dark matter.
originally posted by: joejack1949
Is anyone here a follower of "Suspicious Observers"?
I like the theory that dark matter is nothing more than the magnetic interaction between ambient dust and plasma that exists everywhere in our universe.
originally posted by: bigfatfurrytexan
a reply to: Dalamax
But from my understanding, "dark matter" is only perceived via a hole in calculations. Since they believe the calculations are correct, they assume there is a lot of matter that is unobserved.
Dark matter was invented to explain anomalies in gravitational theory.
originally posted by: HONROC
a reply to: Havamal
Dark matter is such a bogus theory