It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Invisible structures generated by gravitational interactions in the Solar System have created a "space superhighway" network, astronomers have discovered.
These channels enable the fast travel of objects through space, and could be harnessed for our own space exploration purposes, as well as the study of comets and asteroids.
By applying analyses to both observational and simulation data, a team of researchers led by Nataša Todorović of Belgrade Astronomical Observatory in Serbia observed that these superhighways consist of a series of connected arches inside these invisible structures, called space manifolds - and each planet generates its own manifolds, together creating what the researchers have called "a true celestial autobahn".
This network can transport objects from Jupiter to Neptune in a matter of decades, rather than the much longer timescales, on the order of hundreds of thousands to millions of years, normally found in the Solar System.
Here," the researchers wrote in their paper, "we use the FLI to detect the presence and global structure of space manifolds, and capture instabilities that act on orbital time scales; that is, we use this sensitive and well-established numerical tool to more generally define regions of fast transport within the Solar System."
They collected numerical data on millions of orbits in the Solar System, and computed how these orbits fit with known manifolds, modelling the perturbations generated by seven major planets, from Venus to Neptune
And they found that the most prominent arches, at increasing heliocentric distances, were linked with Jupiter; and most strongly with its Lagrange point manifolds. All Jovian close encounters, modelled using test particles, visited the vicinity of Jupiter's first and second Lagrange points.
A few dozen or so particles were then flung into the planet on a collision course; but a vast number more, around 2,000, became uncoupled from their orbits around the Sun to enter hyperbolic escape orbits. On average, these particles reached Uranus and Neptune 38 and 46 years later, respectively, with the fastest reaching Neptune in under a decade.
The majority - around 70 percent - reached a distance of 100 astronomical units (Pluto's average orbital distance is 39.5 astronomical units) in less than a century.
Jupiter's huge influence is not a huge surprise. Jupiter is, apart from the Sun, the most massive object in the Solar System. But the same structures would be generated by all the planets, on timescales commensurate with their orbital periods, the researchers found.
This new understanding could help us better understand how comets and asteroids move around the inner Solar System, and their potential threat to Earth. And, of course, there's the aforementioned benefit to future Solar System exploration missions.
originally posted by: notquiteright
This is an amazing discovery! Exciting stuff. Let's just hope a Vogon ship doesn't show up to clear Earth for a new super space highway. On second thought...