It looks like you're using an Ad Blocker.

Please white-list or disable AboveTopSecret.com in your ad-blocking tool.

Thank you.

 

Some features of ATS will be disabled while you continue to use an ad-blocker.

 

Scientific Methods of proving election fraud

page: 6
32
<< 3  4  5    7 >>

log in

join
share:

posted on Dec, 15 2020 @ 01:44 PM
link   
Statistical analysis looking back at the last 5 elections per county.


Every one of the contested states shows a larger predicted vote share for Trump than what he actually received. This is surprising, because in any set of observations, random chance might expect some predictions to favor Biden, but none do. In Georgia and Arizona, the model does not predict a narrow race, but a decisive Trump victory; the size of the anomaly is (much) larger than the reported margin of victory.



The model also performs well in battleground states that have not been contested, and thus where the election was presumably clean. Every one of these is correctly predicted, including both battleground states that voted for Trump (e.g. Ohio, Florida) and those that voted for Biden (e.g. New Hampshire)



posted on Dec, 15 2020 @ 02:53 PM
link   

originally posted by: 111DPKING111
Statistical analysis looking back at the last 5 elections per county.


Every one of the contested states shows a larger predicted vote share for Trump than what he actually received. This is surprising, because in any set of observations, random chance might expect some predictions to favor Biden, but none do. In Georgia and Arizona, the model does not predict a narrow race, but a decisive Trump victory; the size of the anomaly is (much) larger than the reported margin of victory.



The model also performs well in battleground states that have not been contested, and thus where the election was presumably clean. Every one of these is correctly predicted, including both battleground states that voted for Trump (e.g. Ohio, Florida) and those that voted for Biden (e.g. New Hampshire)



Which part of "statistically independent events" did you sleep through at school?



posted on Dec, 15 2020 @ 02:54 PM
link   

originally posted by: Ringsofsaturn777

originally posted by: Whodathunkdatcheese

Because you say so?

Show me the math.


Many states require an error rate FAR below 1% or they are not allowed by law to certify the election. 2% is absurd.


Because you say so?

Show me the math.



posted on Dec, 15 2020 @ 02:57 PM
link   

originally posted by: rounda


I said there should be no issues with the votes in a *random* sample size that small.

But there was. Which makes it significant.


Nonsense.

The very small size of the one sample means it's all another helping of nothingburger.

Gold star for starting to use the right terms, although you should look up what significance means in stats.
edit on 15-12-2020 by Whodathunkdatcheese because: (no reason given)



posted on Dec, 15 2020 @ 04:29 PM
link   

originally posted by: Whodathunkdatcheese

originally posted by: rounda


I said there should be no issues with the votes in a *random* sample size that small.

But there was. Which makes it significant.


Nonsense.

The very small size of the one sample means it's all another helping of nothingburger.

Gold star for starting to use the right terms, although you should look up what significance means in stats.


Gold star for you almost being able to read, because I said the exact same thing before.

Apparently you don’t understand how difficult it should be to find ballots *out of millions* that were switched, BY HAND, from one candidate to the other or changed, again, BY HAND, to remove the candidate that was voted for if there was no widespread fraud.

The fact that three were found in a random sample of 100 is amazing. “Statistically Significant.”

You know, because there should have been ZERO. statistically speaking, of course. In fact, the odds of finding ANY ballots showing ANY kind of irregularities in a sample size that small should be “statistically impossible.”

Unless, of course, there was widespread voter fraud.

Keep talking, you’re making me look smart as f#
edit on 15-12-2020 by rounda because: (no reason given)



posted on Dec, 15 2020 @ 04:59 PM
link   

originally posted by: Whodathunkdatcheese

originally posted by: Ringsofsaturn777

originally posted by: Whodathunkdatcheese

Because you say so?

Show me the math.


Many states require an error rate FAR below 1% or they are not allowed by law to certify the election. 2% is absurd.


Because you say so?

Show me the math.


Election law says so, Einstein.



posted on Dec, 16 2020 @ 10:55 AM
link   
FYI: The U.S. Senate is currently holding a hearing on 2020 election irregularities.

Live Stream: www.hsgac.senate.gov...



posted on Dec, 17 2020 @ 11:31 AM
link   
Dr. Peter Navarro Election Report

Fake ballots, bribery, dead voters, illegal aliens, ballots counted multiple times, out of state votes

Signature matching abuses, naked ballots, lack of postmark or backdated ballots, voting machine irregularities.



posted on Dec, 17 2020 @ 12:27 PM
link   

originally posted by: rounda


Gold star for you almost being able to read, because I said the exact same thing before.

Apparently you don’t understand how difficult it should be to find ballots *out of millions* that were switched, BY HAND, from one candidate to the other or changed, again, BY HAND, to remove the candidate that was voted for if there was no widespread fraud.

The fact that three were found in a random sample of 100 is amazing. “Statistically Significant.”

You know, because there should have been ZERO. statistically speaking, of course. In fact, the odds of finding ANY ballots showing ANY kind of irregularities in a sample size that small should be “statistically impossible.”

Unless, of course, there was widespread voter fraud.

Keep talking, you’re making me look smart as f#


I'm helping you look like you don't know junior high stats.

It might be amazing to you but it is statistically meaningless.

Statistically significant doesn't need quotation marks. It's a really important concept in stats.

Statistical impossibility doesn't need quotation marks and is another concept you don't understand. Throwing a seven with one six sided die is statistically impossible. Every single vote in November's election going to one candidate is improbable but not statistically impossible.

You might think I'm making you look smart but that's because you don't know smart from a hole in the ground.



posted on Dec, 17 2020 @ 12:28 PM
link   

originally posted by: rounda

originally posted by: Whodathunkdatcheese

originally posted by: Ringsofsaturn777

originally posted by: Whodathunkdatcheese

Because you say so?

Show me the math.


Many states require an error rate FAR below 1% or they are not allowed by law to certify the election. 2% is absurd.


Because you say so?

Show me the math.


Election law says so, Einstein.


That's not math.

Try again. Prove the error rate is significant enough to extrapolate to a 1% error rate across the vote from the original data.



posted on Dec, 17 2020 @ 03:36 PM
link   

originally posted by: Whodathunkdatcheese

originally posted by: rounda


Gold star for you almost being able to read, because I said the exact same thing before.

Apparently you don’t understand how difficult it should be to find ballots *out of millions* that were switched, BY HAND, from one candidate to the other or changed, again, BY HAND, to remove the candidate that was voted for if there was no widespread fraud.

The fact that three were found in a random sample of 100 is amazing. “Statistically Significant.”

You know, because there should have been ZERO. statistically speaking, of course. In fact, the odds of finding ANY ballots showing ANY kind of irregularities in a sample size that small should be “statistically impossible.”

Unless, of course, there was widespread voter fraud.

Keep talking, you’re making me look smart as f#


I'm helping you look like you don't know junior high stats.

It might be amazing to you but it is statistically meaningless.

Statistically significant doesn't need quotation marks. It's a really important concept in stats.

Statistical impossibility doesn't need quotation marks and is another concept you don't understand. Throwing a seven with one six sided die is statistically impossible. Every single vote in November's election going to one candidate is improbable but not statistically impossible.

You might think I'm making you look smart but that's because you don't know smart from a hole in the ground.


Pretty sure you’re helping everyone know you have a lack of understanding of junior high math and basic logic.
edit on 17-12-2020 by rounda because: (no reason given)



posted on Dec, 17 2020 @ 03:39 PM
link   
a reply to: rounda

Actually they're the only one here demonstrating any understanding of statistics.



posted on Dec, 17 2020 @ 04:03 PM
link   

originally posted by: rounda


Pretty sure you’re helping everyone know you have a lack of understanding of junior high math and basic logic.


You might be right. It's so long since I left school that it might be covered in grade school.

Either way, show me the math that says I'm wrong.

It should be easy, seeing as I don't understand simple logic or junior high math.

What are we on? Three deflections from you?
edit on 17-12-2020 by Whodathunkdatcheese because: (no reason given)



posted on Dec, 17 2020 @ 10:11 PM
link   

originally posted by: Whodathunkdatcheese

originally posted by: rounda


Pretty sure you’re helping everyone know you have a lack of understanding of junior high math and basic logic.


You might be right. It's so long since I left school that it might be covered in grade school.

Either way, show me the math that says I'm wrong.

It should be easy, seeing as I don't understand simple logic or junior high math.

What are we on? Three deflections from you?


Why would I waste time doing a math problem I’ve already explained the outcome for?

You think they just pulled a number out of their ass to figure out what the acceptable rate of error for an election should be?

You’re the only one deflecting here. The sample size is what makes finding those ballots statistically significant. Stop ignoring it.
edit on 17-12-2020 by rounda because: (no reason given)



posted on Dec, 17 2020 @ 10:37 PM
link   

originally posted by: Gryphon66
a reply to: rounda

Actually they're the only one here demonstrating any understanding of statistics.


Ok, fine. What’s the chances of finding one single ballot that was changed out of the million or more absentee ballots cast?

Surely, someone who understands statistics can figure that out, right? One in a million.

But there were three found. If you understand statistics, you’d know the chances of that is even smaller. (1/1,000,000) * (1/999,999) * (1/999,998)

And, to top it all off, to find them in a random selection off 100 ballots drops those chances even further. Because you now have to calculate the odds of picking that specific random batch of 100 ballots out of that million before you can even calculate the odds of finding the 3 irregular ballots.

Statistical impossibility.

Unless there was widespread fraud.

And this is just basic odds here. Even if you were to factor in a standard amount of fraud that occurs every year, the chances of finding 3 ballots in that small of a sample size would still be an impossibility.

He’s bitching about the sample size being too small, when in reality, the small sample size is what makes finding 3 irregular ballots statistically significant.

So no, he has no #ing clue what he’s talking about.
edit on 17-12-2020 by rounda because: (no reason given)



posted on Dec, 18 2020 @ 03:09 AM
link   

originally posted by: rounda

Why would I waste time doing a math problem I’ve already explained the outcome for?



Deflection number four.


It's been a long time since I've sat in a schoolroom but I'm pretty sure we didn't get our grades for the outcome, particularly if we had already decided it before we even sat down and started working things out. We got most of our grades for method.

I'm not questioning the legally acceptable error rate. I'm asking you to show me how the error rate you get from your YouTube and Twitter research is statistically meaningful. Look at the title of the thread.

I'm not ignoring the sample size. I'm telling you the sample size is the problem.

If you don't believe me, go and ask a numerate sixteen year old.

I ask again: show me the math.



posted on Dec, 18 2020 @ 03:20 AM
link   

originally posted by: rounda

originally posted by: Gryphon66
a reply to: rounda

Actually they're the only one here demonstrating any understanding of statistics.


Ok, fine. What’s the chances of finding one single ballot that was changed out of the million or more absentee ballots cast?

Surely, someone who understands statistics can figure that out, right? One in a million.

But there were three found. If you understand statistics, you’d know the chances of that is even smaller. (1/1,000,000) * (1/999,999) * (1/999,998)

And, to top it all off, to find them in a random selection off 100 ballots drops those chances even further. Because you now have to calculate the odds of picking that specific random batch of 100 ballots out of that million before you can even calculate the odds of finding the 3 irregular ballots.

Statistical impossibility.

Unless there was widespread fraud.

And this is just basic odds here. Even if you were to factor in a standard amount of fraud that occurs every year, the chances of finding 3 ballots in that small of a sample size would still be an impossibility.

He’s bitching about the sample size being too small, when in reality, the small sample size is what makes finding 3 irregular ballots statistically significant.

So no, he has no #ing clue what he’s talking about.


Deflection number four and a half. You get a credit for attempting some math.

Again, statistical significance does not mean what you think it means. Neither does statistically impossibility.

You're confusing sample size and population size.

You're working from common sense but statistics are often counterintuitive. Ask any numerate sixteen year old.

All the result in the sample that size tells us is we need a bigger sample. More data. Unless the aim is not to prove anything but to keep
innumerate cultists engaged and sending money.

For God's sake, you're on the internet. You're using the most powerful research tool and learning resource in the history of mankind. Seeing as you wasted your time at school, use it to educate yourself instead of watching videos that tell you what you want to hear.

Start here . Let me know if you need any help.


edit on 18-12-2020 by Whodathunkdatcheese because: added a link to help Rounda reach adult levels of numeracy



posted on Dec, 18 2020 @ 10:41 AM
link   

originally posted by: Whodathunkdatcheese

originally posted by: rounda

originally posted by: Gryphon66
a reply to: rounda

Actually they're the only one here demonstrating any understanding of statistics.


Ok, fine. What’s the chances of finding one single ballot that was changed out of the million or more absentee ballots cast?

Surely, someone who understands statistics can figure that out, right? One in a million.

But there were three found. If you understand statistics, you’d know the chances of that is even smaller. (1/1,000,000) * (1/999,999) * (1/999,998)

And, to top it all off, to find them in a random selection off 100 ballots drops those chances even further. Because you now have to calculate the odds of picking that specific random batch of 100 ballots out of that million before you can even calculate the odds of finding the 3 irregular ballots.

Statistical impossibility.

Unless there was widespread fraud.

And this is just basic odds here. Even if you were to factor in a standard amount of fraud that occurs every year, the chances of finding 3 ballots in that small of a sample size would still be an impossibility.

He’s bitching about the sample size being too small, when in reality, the small sample size is what makes finding 3 irregular ballots statistically significant.

So no, he has no #ing clue what he’s talking about.


Deflection number four and a half. You get a credit for attempting some math.

Again, statistical significance does not mean what you think it means. Neither does statistically impossibility.

You're confusing sample size and population size.

You're working from common sense but statistics are often counterintuitive. Ask any numerate sixteen year old.

All the result in the sample that size tells us is we need a bigger sample. More data. Unless the aim is not to prove anything but to keep
innumerate cultists engaged and sending money.

For God's sake, you're on the internet. You're using the most powerful research tool and learning resource in the history of mankind. Seeing as you wasted your time at school, use it to educate yourself instead of watching videos that tell you what you want to hear.

Start here . Let me know if you need any help.



You’re a moron. You still don’t get it, do you?

(1/1000000) * (1/999,999) ... * (1/999,900) * (1/100) * (1/99) * (1/98)
edit on 18-12-2020 by rounda because: (no reason given)



posted on Dec, 18 2020 @ 11:19 AM
link   

originally posted by: rounda

originally posted by: Whodathunkdatcheese

originally posted by: rounda

originally posted by: Gryphon66
a reply to: rounda

Actually they're the only one here demonstrating any understanding of statistics.


Ok, fine. What’s the chances of finding one single ballot that was changed out of the million or more absentee ballots cast?

Surely, someone who understands statistics can figure that out, right? One in a million.

But there were three found. If you understand statistics, you’d know the chances of that is even smaller. (1/1,000,000) * (1/999,999) * (1/999,998)

And, to top it all off, to find them in a random selection off 100 ballots drops those chances even further. Because you now have to calculate the odds of picking that specific random batch of 100 ballots out of that million before you can even calculate the odds of finding the 3 irregular ballots.

Statistical impossibility.

Unless there was widespread fraud.

And this is just basic odds here. Even if you were to factor in a standard amount of fraud that occurs every year, the chances of finding 3 ballots in that small of a sample size would still be an impossibility.

He’s bitching about the sample size being too small, when in reality, the small sample size is what makes finding 3 irregular ballots statistically significant.

So no, he has no #ing clue what he’s talking about.


Deflection number four and a half. You get a credit for attempting some math.

Again, statistical significance does not mean what you think it means. Neither does statistically impossibility.

You're confusing sample size and population size.

You're working from common sense but statistics are often counterintuitive. Ask any numerate sixteen year old.

All the result in the sample that size tells us is we need a bigger sample. More data. Unless the aim is not to prove anything but to keep
innumerate cultists engaged and sending money.

For God's sake, you're on the internet. You're using the most powerful research tool and learning resource in the history of mankind. Seeing as you wasted your time at school, use it to educate yourself instead of watching videos that tell you what you want to hear.

Start here . Let me know if you need any help.



You’re a moron. You still don’t get it, do you?

(1/1000000) * (1/999,999) ... * (1/999,900) * (1/100) * (1/99) * (1/98)


You didn't check the link. You just doubled down.

We're not talking back of a cigarette packet calculations. We're not talking number soup to keep people angry and sending money.

We're talking statistics. The kind of stuff that will be taken seriously by a court.

Seriously, look up what statistical significance and statistical impossibility mean. Look at the link I posted from Statistics for Dummies or ask some local kids to help you. Work it all out and then show me what you've done.

Repeating the same old nonsense won't be any more correct next time than it has been so far.
edit on 18-12-2020 by Whodathunkdatcheese because: (no reason given)



posted on Dec, 18 2020 @ 12:59 PM
link   

originally posted by: Whodathunkdatcheese

originally posted by: rounda

originally posted by: Whodathunkdatcheese

originally posted by: rounda

originally posted by: Gryphon66
a reply to: rounda

Actually they're the only one here demonstrating any understanding of statistics.


Ok, fine. What’s the chances of finding one single ballot that was changed out of the million or more absentee ballots cast?

Surely, someone who understands statistics can figure that out, right? One in a million.

But there were three found. If you understand statistics, you’d know the chances of that is even smaller. (1/1,000,000) * (1/999,999) * (1/999,998)

And, to top it all off, to find them in a random selection off 100 ballots drops those chances even further. Because you now have to calculate the odds of picking that specific random batch of 100 ballots out of that million before you can even calculate the odds of finding the 3 irregular ballots.

Statistical impossibility.

Unless there was widespread fraud.

And this is just basic odds here. Even if you were to factor in a standard amount of fraud that occurs every year, the chances of finding 3 ballots in that small of a sample size would still be an impossibility.

He’s bitching about the sample size being too small, when in reality, the small sample size is what makes finding 3 irregular ballots statistically significant.

So no, he has no #ing clue what he’s talking about.


Deflection number four and a half. You get a credit for attempting some math.

Again, statistical significance does not mean what you think it means. Neither does statistically impossibility.

You're confusing sample size and population size.

You're working from common sense but statistics are often counterintuitive. Ask any numerate sixteen year old.

All the result in the sample that size tells us is we need a bigger sample. More data. Unless the aim is not to prove anything but to keep
innumerate cultists engaged and sending money.

For God's sake, you're on the internet. You're using the most powerful research tool and learning resource in the history of mankind. Seeing as you wasted your time at school, use it to educate yourself instead of watching videos that tell you what you want to hear.

Start here . Let me know if you need any help.



You’re a moron. You still don’t get it, do you?

(1/1000000) * (1/999,999) ... * (1/999,900) * (1/100) * (1/99) * (1/98)


You didn't check the link. You just doubled down.

We're not talking back of a cigarette packet calculations. We're not talking number soup to keep people angry and sending money.

We're talking statistics. The kind of stuff that will be taken seriously by a court.

Seriously, look up what statistical significance and statistical impossibility mean. Look at the link I posted from Statistics for Dummies or ask some local kids to help you. Work it all out and then show me what you've done.

Repeating the same old nonsense won't be any more correct next time than it has been so far.


Why don’t you do the math and show us all here how much you understand? Because you have no clue what you’re talking about.

Statistically impossible, genius.



new topics

top topics



 
32
<< 3  4  5    7 >>

log in

join