It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Dias and his research team combined hydrogen with carbon and sulfur to photochemically synthesize simple organic-derived carbonaceous sulfur hydride in a diamond anvil cell, a research device used to examine miniscule amounts of materials under extraordinarily high pressure.
The carbonaceous sulfur hydride exhibited superconductivity at about 58 degrees Fahrenheit and a pressure of about 39 million psi. This is the first time that superconducting material has been observed at room temperatures.
The amount of superconducting material created by the diamond anvil cells is measured in picoliters—about the size of a single inkjet particle.
The next challenge, Dias says, is finding ways to create the room temperature superconducting materials at lower pressures, so they will be economical to produce in greater volume. In comparison to the millions of pounds of pressure created in diamond anvil cells, the atmospheric pressure of Earth at sea level is about 15 PSI.
Here we report superconductivity in a photochemically transformed carbonaceous sulfur hydride system, starting from elemental precursors, with a maximum superconducting transition temperature of 287.7 ± 1.2 kelvin (about 15 degrees Celsius) achieved at 267 ± 10 gigapascals. he superconducting state is observed over a broad pressure range in the diamond anvil cell, from 140 to 275 gigapascals, with a sharp upturn in transition temperature above 220 gigapascals. Superconductivity is established by the observation of zero resistance, a magnetic susceptibility of up to 190 gigapascals, and reduction of the transition temperature under an external magnetic field of up to 9 tesla, with an upper critical magnetic field of about 62 tesla according to the Ginzburg–Landau model at zero temperature. The light, quantum nature of hydrogen limits the structural and stoichiometric determination of the system by X-ray scattering techniques, but Raman spectroscopy is used to probe the chemical and structural transformations before metallization. The introduction of chemical tuning within our ternary system could enable the preservation of the properties of room-temperature superconductivity at lower pressures.
Applications include:
* Power grids that transmit electricity without the loss of up to 200 million megawatt hours (MWh) of the energy that now occurs due to resistance in the wires.
* A new way to propel levitated trains and other forms of transportation.
* Medical imaging and scanning techniques such as MRI and magnetocardiography.
* Faster, more efficient electronics for digital logic and memory device technology.
(phys.org article)
39 million psi
A world wide power grid of lossless power cables would be damn cool.
5,909 male Borneo Pygmy
My calculations say 7911 Borneo pygmy elephants
Electrical resistance occurs in normal wires when freely flowing electrons bump into the atoms that make up the metal. But researchers discovered in 1911 that at low temperatures, electrons can induce vibrations in a metal’s atomic lattice, and those vibrations in turn draw electrons together into couples known as Cooper pairs. Different quantum rules govern these couples, which stream together in a coherent swarm that passes through the metal’s lattice unimpeded, experiencing no resistance whatsoever. The superconducting fluid also expels magnetic fields — an effect that could allow magnetically levitating vehicles to float frictionlessly above superconducting rails.