It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
I'm not talking about a warp drive that bends space at a singular point in space. I'm talking about returning to the initial state which would require lowering the entropy of the universe.
You're just creating some kind of wormhole or bridge.
I'm not talking about a warp drive that bends space at a singular point in space. I'm talking about returning to the initial state which would require lowering the entropy of the universe.
originally posted by: dubiousatworst
sorry to rain on people's parade
www.technologyreview.com...
As Scott Aaronson, director of the Quantum Information Center at the University of Texas at Austin, says, “If you’re simulating a time-reversible process on your computer, then you can ‘reverse the direction of time’ by simply reversing the direction of your simulation. From a quick look at the paper, I confess that I didn’t understand how this becomes more profound if the simulation is being done on IBM’s quantum computer.”
I'm wondering if the equations in this simulation that reversed the entropy of a wave packet can be applied to the compression of space in a warp field tensor equation.
Causality violation and semiclassical instability
Calculations by physicist Allen Everett show that warp bubbles could be used to create closed timelike curves in general relativity, meaning that the theory predicts that they could be used for backwards time travel.[28] While it is possible that the fundamental laws of physics might allow closed timelike curves, the chronology protection conjecture hypothesizes that in all cases where the classical theory of general relativity allows them, quantum effects would intervene to eliminate the possibility, making these spacetimes impossible to realize (a possible type of effect that would accomplish this is a buildup of vacuum fluctuations on the border of the region of spacetime where time travel would first become possible, causing the energy density to become high enough to destroy the system that would otherwise become a time machine). Some results in semiclassical gravity appear to support the conjecture, including a calculation dealing specifically with quantum effects in warp-drive spacetimes that suggested that warp bubbles would be semiclassically unstable,[10][29] but ultimately the conjecture can only be decided by a full theory of quantum gravity.[30]
Miguel Alcubierre briefly discusses some of these issues in a series of lecture slides posted online,[31] where he writes: "beware: in relativity, any method to travel faster than light can in principle be used to travel back in time (a time machine)". In the next slide he brings up the chronology protection conjecture and writes: "The conjecture has not been proven (it wouldn’t be a conjecture if it had), but there are good arguments in its favor based on quantum field theory. The conjecture does not prohibit faster-than-light travel. It just states that if a method to travel faster than light exists, and one tries to use it to build a time machine, something will go wrong: the energy accumulated will explode, or it will create a black hole."
originally posted by: purplemer
a reply to: neoholographic
It works because our universe is binary
originally posted by: projectvxn
a reply to: purplemer
If that were the case you'd be able to break down every system using boolean algebra and truth tables.
It's not quite that simple.
Researchers from the Moscow Institute of Physics and Technology, ETH Zurich, and Argonne National Laboratory, U.S, have described an extended quantum Maxwell's demon, a device locally violating the second law of thermodynamics in a system located 1-5 meters away from the demon. The device could find applications in quantum computers and microscopic refrigerators cooling down tiny objects with pinpoint accuracy. The research was published Dec. 4 in Physical Review B.
The second law says that the entropy -- that is, the degree of disorder or randomness -- of an isolated system never decreases.
"Our demon causes a device called a qubit to transition into a more orderly state," explained the study's lead author Andrey Lebedev of MIPT and ETH Zurich. "Importantly, the demon does not alter the qubit's energy and acts over a distance that is huge for quantum mechanics."
Using an obscure approach to quantum mechanics that treated units of information as its basic building blocks, Lloyd spent several years studying the evolution of particles in terms of shuffling 1s and 0s. He found that as the particles became increasingly entangled with one another, the information that originally described them (a “1” for clockwise spin and a “0” for counterclockwise, for example) would shift to describe the system of entangled particles as a whole. It was as though the particles gradually lost their individual autonomy and became pawns of the collective state. Eventually, the correlations contained all the information, and the individual particles contained none. At that point, Lloyd discovered, particles arrived at a state of equilibrium, and their states stopped changing, like coffee that has cooled to room temperature.
“What’s really going on is things are becoming more correlated with each other,” Lloyd recalls realizing. “The arrow of time is an arrow of increasing correlations.”
Researchers have managed to return a computer briefly to the past. The results suggest new paths for exploring the backward flow of time in quantum systems. They also open new possibilities for quantum computer program testing and error correction.
An international team of scientists led by the U.S. Department of Energy's (DOE) Argonne National Laboratory explored this question in a first-of-its-kind experiment, managing to return a computer briefly to the past. The results, published March13 in the journal Scientific Reports, suggest new paths for exploring the backward flow of time in quantum systems. They also open new possibilities for quantum computer program testing and error correction.
To achieve the time reversal, the research team developed an algorithm for IBM's public quantum computer that simulates the scattering of a particle. In classical physics, this might appear as a billiard ball struck by a cue, traveling in a line. But in the quantum world, one scattered particle takes on a fractured quality, spreading in multiple directions. To reverse its quantum evolution is like reversing the rings created when a stone is thrown into a pond.
In nature, restoring this particle back to its original state -- in essence, putting the broken teacup back together -- is impossible.
The result deepens our understanding of how the second law of thermodynamics -- that a system will always move from order to entropy and not the other way around -- acts in the quantum world. The researchers demonstrated in previous work that, by teleporting information, a local violation of the second law was possible in a quantum system separated into remote parts that could balance each other out.
The finding may eventually enable better methods of error correction on quantum computers, where accumulated glitches generate heat and beget new ones. A quantum computer able to effectively jump back and clean up errors as it works could operate far more efficiently.
The study also raises the question: can the researchers now figure out a way to make older folks young again? "Maybe," Vinokur jokes, "with the proper funding."
So what exactly don't you understand?
So time travel was achieved on a very limited basis. In order to travel back in time, you would have to reverse entropy of the system back towards the initial state. I don't think that's possible for classical systems but it happened here.
originally posted by: projectvxn
a reply to: purplemer
The fact that we aren't all low energy photons right now means that this is not the case.
originally posted by: projectvxn
a reply to: purplemer
Care to explain what you mean by binary?
Boolean logic doesn't explain the universe or how it functions. [/quote
Hermetic Principles. Everything has an opposite or opposing pole. Our universe being no different. That is all I mean by binary.