It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
A fundamental scientific assumption called local realism conflicts with certain predictions of quantum mechanics. Those predictions have now been verified, with none of the loopholes that have compromised earlier tests.
Our general logic would assume that the object is either wave-like or particle-like by its very nature, and our measurements will have nothing to do with the answer. But quantum theory predicts that the result all depends on how the object is measured at the end of its journey. And that's exactly what a team from the Australian National University has now found. "It proves that measurement is everything. At the quantum level, reality does not exist if you are not looking at it," lead researcher and physicist Andrew Truscott said in a press release.
Counterfactual quantum cryptography (CQC) is used here as a tool to assess the status of the quantum state: Is it real/ontic (an objective state of Nature) or epistemic (a state of the observer's knowledge)? In contrast to recent approaches to wave function ontology, that are based on realist models of quantum theory, here we recast the question as a problem of communication between a sender (Bob), who uses interaction-free measurements, and a receiver (Alice), who observes an interference pattern in a Mach-Zehnder set-up. An advantage of our approach is that it allows us to define the concept of "physical", apart from "real". In instances of counterfactual quantum communication, reality is ascribed to the interaction-freely measured wave function (ψ) because Alice deterministically infers Bob's measurement. On the other hand, ψ does not correspond to the physical transmission of a particle because it produced no detection on Bob's apparatus. We therefore conclude that the wave function in this case (and by extension, generally) is real, but not physical. Characteristically for classical phenomena, the reality and physicality of objects are equivalent, whereas for quantum phenomena, the former is strictly weaker. As a concrete application of this idea, the nonphysical reality of the wavefunction is shown to be the basic nonclassical phenomenon that underlies the security of CQC.
While Einstein considered quantum entanglement as "spooky action at a distance," and those who fully accept entanglement acknowledge it to be counterintuitive, current entanglement-based quantum communication schemes for transferring an unknown quantum state from one place to another require classical transportation of particles between sender and receiver. Now consider this: Recently, scientists in China at Harbin Institute of Technology, Yanbian University and Changchun University demonstrated what is known as a counterfactual approach in which quantum information can be transferred between two distant participants without sending any physical particles between them. The researchers accomplished this by entangling two nonlocal qubits with each other without interaction – meaning that the present scheme can transport an unknown qubit in a nondeterministic manner without prior entanglement sharing or classical communication between the participants. Moreover, the scientists state that their approach provides a new method for creating entanglement that allows two qubits to be entangled without interaction between them.
Current models of visual perception typically assume that human vision estimates true properties of physical objects, properties that exist even if unperceived. However, recent studies of perceptual evolution, using evolutionary games and genetic algorithms, reveal that natural selection often drives true perceptions to extinction when they compete with perceptions tuned to fitness rather than truth: Perception guides adaptive behavior; it does not estimate a preexisting physical truth. Moreover, shifting from evolutionary biology to quantum physics, there is reason to disbelieve in preexisting physical truths: Certain interpretations of quantum theory deny that dynamical properties of physical objects have definite values when unobserved. In some of these interpretations the observer is fundamental, and wave functions are compendia of subjective probabilities, not preexisting elements of physical reality. These two considerations, from evolutionary biology and quantum physics, suggest that current models of object perception require fundamental reformulation. Here we begin such a reformulation, starting with a formal model of consciousness that we call a “conscious agent.” We develop the dynamics of interacting conscious agents, and study how the perception of objects and space-time can emerge from such dynamics. We show that one particular object, the quantum free particle, has a wave function that is identical in form to the harmonic functions that characterize the asymptotic dynamics of conscious agents; particles are vibrations not of strings but of interacting conscious agents. This allows us to reinterpret physical properties such as position, momentum, and energy as properties of interacting conscious agents, rather than as preexisting physical truths. We sketch how this approach might extend to the perception of relativistic quantum objects, and to classical objects of macroscopic scale.
DONALD HOFFMAN: Right. The classic argument is that those of our ancestors who saw more accurately had a competitive advantage over those who saw less accurately and thus were more likely to pass on their genes that coded for those more accurate perceptions, so after thousands of generations we can be quite confident that we’re the offspring of those who saw accurately, and so we see accurately. That sounds very plausible. But I think it is utterly false. It misunderstands the fundamental fact about evolution, which is that it’s about fitness functions — mathematical functions that describe how well a given strategy achieves the goals of survival and reproduction. The mathematical physicist Chetan Prakash proved a theorem that I devised that says: According to evolution by natural selection, an organism that sees reality as it is will never be more fit than an organism of equal complexity that sees none of reality but is just tuned to fitness. Never.
I think that’s absolutely true. The neuroscientists are saying, “We don’t need to invoke those kind of quantum processes, we don’t need quantum wave functions collapsing inside neurons, we can just use classical physics to describe processes in the brain.” I’m emphasizing the larger lesson of quantum mechanics: Neurons, brains, space … these are just symbols we use, they’re not real. It’s not that there’s a classical brain that does some quantum magic. It’s that there’s no brain! Quantum mechanics says that classical objects — including brains — don’t exist. So this is a far more radical claim about the nature of reality and does not involve the brain pulling off some tricky quantum computation. So even Penrose hasn’t taken it far enough. But most of us, you know, we’re born realists. We’re born physicalists. This is a really, really hard one to let go of.
Professor Kostas Skenderis of Mathematical Sciences at the University of Southampton explains: "Imagine that everything you see, feel and hear in three dimensions (and your perception of time) in fact emanates from a flat two-dimensional field. The idea is similar to that of ordinary holograms where a three-dimensional image is encoded in a two-dimensional surface, such as in the hologram on a credit card. However, this time, the entire universe is encoded." Although not an example with holographic properties, it could be thought of as rather like watching a 3-D film in a cinema. We see the pictures as having height, width and crucially, depth—when in fact it all originates from a flat 2-D screen. The difference, in our 3-D universe, is that we can touch objects and the 'projection' is 'real' from our perspective.
Time is NOT real: Physicists show EVERYTHING happens at the same time
It matters if you're talking about a subatomic particle or something much larger, let's say a cat. I don't think you understand Schrodinger's cat paradox. It's not saying the cat is really in a superposition of states "dead" and "alive" until it's measured, on the contrary it's saying that people who take observations of individual subatomic particles and try to say the same thing happens to complex systems are getting it wrong.
originally posted by: neoholographic
I think it's time for science to bite the bullet of materialism. The evidence is overwhelming that an objective physical universe doesn't exist as we perceive it to be and consciousness may be more fundamental than what we call matter.
Now do you get his point?
until the system collapsed into one configuration, the cat would exist in some superposition zombie state of being both alive and dead.
Of course, Schrödinger claimed, that was ridiculous. Quantum superposition could not work with large objects such as cats, because it is impossible for an organism to be simultaneously alive and dead. Thus, he reasoned that the Copenhagen Interpretation must be inherently flawed. While many people incorrectly assume Schrödinger supported the premise behind the thought experiment, he really didn’t. His entire point was that it was impossible.
The wave-function is real but nonphysical: A view from counterfactual quantum cryptography
What we call volume is a projection of information on a 2D surface area.
A UK, Canadian and Italian study has provided what researchers believe is the first observational evidence that our universe could be a vast and complex hologram.
Theoretical physicists and astrophysicists, investigating irregularities in the cosmic microwave background (the 'afterglow' of the Big Bang), have found there is substantial evidence supporting a holographic explanation of the universe—in fact, as much as there is for the traditional explanation of these irregularities using the theory of cosmic inflation.
phys.org...