It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
University of Alberta chemists have taken a critical step toward creating a new generation of silicon-based lithium ion batteries with 10 times the charge capacity of current cells.
"We wanted to test how different sizes of silicon nanoparticles could affect fracturing inside these batteries," said Jillian Buriak, a U of A chemist and Canada Research Chair in Nanomaterials for Energy.
Silicon shows promise for building much higher-capacity batteries because it's abundant and can absorb much more lithium than the graphite used in current lithium ion batteries. The problem is that silicon is prone to fracturing and breaking after numerous charge-and-discharge cycles, because it expands and contracts as it absorbs and releases lithium ions
The research has potential applications in "anything that relies upon energy storage using a battery," said Veinot, who is the director of the ATUMS graduate student training program that partially supported the research.
"Imagine a car having the same size battery as a Tesla that could travel 10 times farther or you charge 10 times less frequently, or the battery is 10 times lighter."
Veinot said the next steps are to develop a faster, less expensive way to create silicon nanoparticles to make them more accessible for industry and technology developers.
originally posted by: BomSquad
Tiny silicon particles could power lithium ion batteries with 10 times more capacity
University of Alberta chemists have taken a critical step toward creating a new generation of silicon-based lithium ion batteries with 10 times the charge capacity of current cells.
"We wanted to test how different sizes of silicon nanoparticles could affect fracturing inside these batteries," said Jillian Buriak, a U of A chemist and Canada Research Chair in Nanomaterials for Energy.
Silicon shows promise for building much higher-capacity batteries because it's abundant and can absorb much more lithium than the graphite used in current lithium ion batteries. The problem is that silicon is prone to fracturing and breaking after numerous charge-and-discharge cycles, because it expands and contracts as it absorbs and releases lithium ions
Anything using a battery could potentially benefit from this kind of technological breakthrough. The one thing that is really holding back renewable energy is storage capacity. Solar power is great during the day and wind power is great while it is windy, but after dark or in calm weather, they don't do squat. Our grid is designed for just in time delivery of power with almost no capacity for storing power for times when the demand outweighs the supply. After dark your fancy solar power station is doing nothing. With greater ability to store power for later use, renewables become a more viable solution for "the grid" than they currently are.
The research has potential applications in "anything that relies upon energy storage using a battery," said Veinot, who is the director of the ATUMS graduate student training program that partially supported the research.
"Imagine a car having the same size battery as a Tesla that could travel 10 times farther or you charge 10 times less frequently, or the battery is 10 times lighter."
Veinot said the next steps are to develop a faster, less expensive way to create silicon nanoparticles to make them more accessible for industry and technology developers.
I wonder what the current costs of creating the silicon nanoparticles is now. This sounds promising.
We live in an age when technological innovation seems to be limitlessly soaring. But for all the satisfying speed with which our gadgets have improved, many of them share a frustrating weakness: the batteries. Though they have improved in last century, batteries remain finicky, bulky, expensive, toxic, and maddeningly short-lived. The quest is on for a “super battery,” and the stakes in this hunt are much higher than the phone in your pocket. With climate change looming, electric cars and renewable energy sources like wind and solar power could hold keys to a greener future...if we can engineer the perfect battery. Join host David Pogue as he explores the hidden world of energy storage, from the power—and danger—of the lithium-ion batteries we use today, to the bold innovations that could one day charge our world.