It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
At the same time, Sandberg suspects that “real” neural interfacing will take a while, since it needs to be safe, convenient, and have a killer app worth doing. It will also have to compete with existing communications systems and their apps. Similarly, Naam says we could build a telepathic network in a few years, but with “very, very, low fidelity.” But that low fidelity, he says, would be considerably worse than the quality we get by using phones — or even text or IM. “I doubt anyone who’s currently healthy would want to use it.” But for a really stable, high bandwidth system in and out of the brain, that could take upwards of 15 to 20 years, which Naam concedes is optimistic. “In any case, it’s not a huge priority,” he says. “And it’s not one where we’re willing to cut corners today. It’s firmly in the medical sphere, and the first rule there is ‘do no harm’. That means that science is done extremely cautiously, with the priority overwhelmingly — and appropriately — being not to harm the human subject.”
I asked Sandberg how the telepathic noosphere will disrupt the various way humans engage in work and social relations. “Any enhancement of communication ability is a big deal,” he responded. “We humans are dominant because we are so good at communication and coordination, and any improvement would likely boost that. Just consider flash mobs or how online ARG communities do things that seem nearly supernatural.”
“If we become telepathic, it means we will have ways of doing the same with concepts, ideas and sensory signals,” says Sandberg. “It is hard to predict just what this will be used for since there are so few limitations. But just consider the possibility of getting instruction and skills via augmented reality and well designed sensory/motor interfaces. A team might help a member perform actions while ‘looking over her shoulder’, as if she knew all they knew. And if the system is general enough, it means that you could in principle get help from any skilled person anywhere in the world.”
In response to the question of privacy, Sandberg quipped, “Privacy? What privacy?” Our lives, he says, will reside in the cloud, and on servers owned by various companies that also sell results from them to other organizations. “Even if you do not use telepathy-like systems, your behaviour and knowledge can likely be inferred from the rich data everybody else provides,” he says. “And the potential for manipulation, surveillance and propaganda are endless.”
If all goes well, it will conquer the field’s Everest: developing a brain-computer interface that could enable people with a spinal cord injury, locked-in syndrome, ALS, or other paralyzing condition to talk again. STAT Plus: Exclusive analysis of biotech, pharma, and the life sciences.
The technology needn’t give these patients the ability to deliver a Shakespeare soliloquy. More and more experts therefore think a system that decodes whether a person is silently saying yes or no or hungry or pain or water is now within reach, thanks to parallel advances in neuroscience, engineering, and machine learning.
“We think we’re getting enough of an understanding of the brain signals that encode silent speech that we could soon make something practical,” said Brian Pasley of the University of California, Berkeley. “Even something modest could be meaningful to patients. I’m convinced it’s possible.”