It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
The strangeness comes through in an experiment conceived by Robert Spekkens, a physicist who studies the foundations of quantum mechanics at the Perimeter Institute for Theoretical Physics in Waterloo, Canada. Spekkens and his colleagues carried out the experiment in 2009. Alice prepares a photon in one of four possible ways. Classically, we could think of these four ways as two bits of information. Bob then measures the particle in one of two possible ways. If he chooses to measure the particle in the first way, he obtains Alice’s first bit of information; if he chooses the second, he obtains her second bit. (Technically, he does not get either bit with certainty, just with a high degree of probability.) The obvious explanation for this result would be if the photon stores both bits and releases one based on Bob’s choice. But if that were the case, you’d expect Bob to be able to obtain information about both bits — to measure both of them or at least some characteristic of both, such as whether they are the same or different. But he can’t. No experiment, even in principle, can get at both bits — a restriction known as the Holevo bound. “Quantum systems seem to have more memory, but you can’t actually access it,” said Costantino Budroni, a physicist at the University of Siegen in Germany.
Another example of temporal entanglement comes from a team led by Stephen Brierley, a mathematical physicist at the University of Cambridge. In a paper last year, Brierley and his collaborators explored the bizarre intersection of entanglement, information and time. If Alice and Bob choose from just two polarizer orientations, the correlations they see are readily explained by a particle carrying a single bit. But if they choose among eight possible directions and they measure and remeasure the particle 16 times, they see correlations that a single bit of memory can’t explain. “What we have proven rigorously is that, if you propagate in time the number of bits that corresponds to this Holevo bound, then you definitely cannot explain what quantum mechanics predicts,” said Tomasz Paterek, a physicist at Nanyang Technological University in Singapore, and one of Brierley’s co-authors. In short, what Alice does to the particle at the beginning of the experiment is correlated with what Bob sees at the end in a way that’s too strong to be easily explained. You might call this “supermemory,” except that the category of “memory” doesn’t seem to capture what’s going on.
Subatomic particles do it. Now the observation that groups of brain cells seem to have their own version of quantum entanglement, or “spooky action at a distance”, could help explain how our minds combine experiences from many different senses into one memory.
Previous experiments have shown that the electrical activity of neurons in separate parts of the brain can oscillate simultaneously at the same frequency – a process known as phase locking. The frequency seems to be a signature that marks out neurons working on the same task, allowing them to identify each other.
In practice, entanglement is an extremely delicate condition. Background disturbances readily destroy the state—a bane for quantum computing in particular, because calculations are done only as long as the entanglement lasts. But for the first time, quantum physicist Seth Lloyd of the Massachusetts Institute of Technology suggests that memories of entanglement can survive its destruction. He compares the effect to Emily Brontë’s novel Wuthering Heights: “the spectral Catherine communicates with her quantum Heathcliff as a flash of light from beyond the grave.”
It's clear the universe has knowledge of itself
originally posted by: Dr UAE
a reply to: neoholographic
It's clear the universe has knowledge of itself
shouldn't you prove this first before anyone proceeds?
According to a study published in Nature’s Scientific Reports, the universe may be growing in the same way as a giant brain – with the electrical firing between brain cells ‘mirrored’ by the shape of expanding galaxies.
The results of a computer simulation suggest that “natural growth dynamics” – the way that systems evolve – are the same for different kinds of networks – whether its the internet, the human brain or the universe as a whole.
“The result, they argue, is that the universe really does grow like a brain. The study raises profound questions about how the universe works.” Krioukov said.
originally posted by: neoholographic
I say the answer is yes.
It's clear the universe has knowledge of itself.
originally posted by: Kharron
a reply to: neoholographic
Cool thread, I missed that one. Thank you.
Keep up the good work, love your threads.