It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Lou worried that the lines he’d noticed might be illusory, so he checked the archive of tumor specimens from patients at the cancer center. Lo and behold, the same long cellular processes were present in the tumors, too, so he set out to investigate their relevance. Since then, as a faculty member at the University of Minnesota, he’s found evidence that tumor cells use these TNTs to share molecular messages in the form of short regulatory snippets of RNA called microRNA, enabling cancer cells resistant to chemotherapy drugs to confer the same resistance on their neighbors.
How did the tunneling nanotubes go unnoticed for such a long time? Lou notes that in the last couple of decades, cancer research has centered primarily on detecting and therapeutically targeting mutations in cancer cells — and not the structures between them. “It’s right in front of our face, but if that’s not what people are focusing on, they’re going to miss it,” he said.
That’s changing now. In the last few years, the number of researchers working on TNTs and figuring out what they do has risen steeply. Research teams have discovered that TNTs transfer all kinds of cargo beyond microRNAs, including messenger RNAs, proteins, viruses and even whole organelles, such as lysosomes and mitochondria.
“It’s only the tip of the iceberg,” Lou said. “It’s a pretty exciting time to look at these.”
These fragile structures are appearing not only in the context of conditions such as cancer, AIDS and neurodegenerative diseases, but also in normal embryonic development. Healthy adult cells don’t usually make TNTs, but stressed or ailing cells appear to induce them by sending out signals to call for help. It’s unclear, though, how healthy cells sense that their neighbors need help or how they physiologically “know” what specific cargo to send.
Scientists from the Institut Pasteur have demonstrated the role of lysosomal vesicles in transporting α-synuclein aggregates, responsible for Parkinson's and other neurodegenerative diseases, between neurons. These proteins move from one neuron to the next in lysosomal vesicles which travel along the "tunneling nanotubes" between cells. These findings were published in The EMBO Journal on Aug. 22, 2016.
...
This study demonstrates that TNTs play a significant part in the intercellular transfer of α-synuclein fibrils and reveals the specific role of lysosomes in this process. This represents a major breakthrough in understanding the mechanisms underlying the progression of synucleinopathies.
Co-author of the paper, published in the Proceedings of the National Academy of Sciences (PNAS), Hans-Hermann Gerdes, said the discovery was akin to ultra-thin telephone cables between cells, allowing them to talk to one another.
Gerdes and his colleagues first discovered protein nanotubes (also called membrane nanotubes) in the kidney six years ago using light microscopy. Apart from forming a means of electrical coupling, the nanotubes have also been shown to be able to transport molecules, viruses and prions from cell to cell, at least in a Petri dish. It is not yet known how cells produce nanotubes or how they open the membrane of another cell several cell-widths away.
Some scientists doubted the initial discovery of nanotubes, since there seemed to be no strong evidence that nanotubes are needed physiologically. One critic was Yale microbiologist Walther Mothes, who said he was impressed by the new finding that nanotubes use gap junctions for electrical communication, which he said makes a lot of sense, and should lead to further study of TNTs.
originally posted by: TEOTWAWKIAIFF
Lou worried that the lines he’d noticed might be illusory, so he checked the archive of tumor specimens from patients at the cancer center. Lo and behold, the same long cellular processes were present in the tumors, too, so he set out to investigate their relevance. Since then, as a faculty member at the University of Minnesota, he’s found evidence that tumor cells use these TNTs to share molecular messages in the form of short regulatory snippets of RNA called microRNA, enabling cancer cells resistant to chemotherapy drugs to confer the same resistance on their neighbors.
How did the tunneling nanotubes go unnoticed for such a long time? Lou notes that in the last couple of decades, cancer research has centered primarily on detecting and therapeutically targeting mutations in cancer cells — and not the structures between them. “It’s right in front of our face, but if that’s not what people are focusing on, they’re going to miss it,” he said.
That’s changing now. In the last few years, the number of researchers working on TNTs and figuring out what they do has risen steeply. Research teams have discovered that TNTs transfer all kinds of cargo beyond microRNAs, including messenger RNAs, proteins, viruses and even whole organelles, such as lysosomes and mitochondria.
“It’s only the tip of the iceberg,” Lou said. “It’s a pretty exciting time to look at these.”
These fragile structures are appearing not only in the context of conditions such as cancer, AIDS and neurodegenerative diseases, but also in normal embryonic development. Healthy adult cells don’t usually make TNTs, but stressed or ailing cells appear to induce them by sending out signals to call for help. It’s unclear, though, how healthy cells sense that their neighbors need help or how they physiologically “know” what specific cargo to send.
QuantaMagazine.org - Cells Talk and Help One Another via Tiny Tube Networks.
The tunneling nanotubes (TNT), look like the pneumatic tubes at the bank used send/get your money to your car! Everybody was so focused on genetic material and tumor growth rate that the interconnecting tissues was basically ignored. Going back over old data verified that it was not a fluke and not contained to cancerous cells.
Although they do spend an awful lot of time talking about cancerous cells the thing that popped out at me was TNT can carry prions. If you wondered why the uproar of downed cattle being sold at market, now you know. It is not safe! The TNT superhighway is open to the them and they travel around in your brain waiting for the day to go full mad cow (Creutzfeldt-Jakob disease).
The body is amazing at the lengths it will go through to try and help the entire body survive. And now we know a bit more of how diseases can use the body's own 9-1-1 system against itself. Maybe start really knocking down some of the more insidious diseases.