It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
What they found was odd - as the material warmed up from absolute zero, the amount that a magnetic field could penetrate the material increased linearly instead of exponentially, which is what is normally seen with superconductors.
After running a series of measurements and calculations, the researched concluded that the best explanation for what was going on was that the electrons must have been disguised as particles with higher spin - something that wasn't even considered as a possibility for a superconductor before.
While this new type of superconductivity still requires incredibly cold temperatures for now, the discovery gives the entire field a whole new direction.
"We used to be confined to pairing with spin one-half particles," says lead author Hyunsoo Kim.
"But if we start considering higher spin, then the landscape of this superconducting research expands and just gets more interesting."
This is incredibly early days, and there's still a lot we have to learn about exactly what's going on here.
But the fact that we have a brand new type of superconductivity to test and measure, adding a cool new breakthrough to the 100 years of this type of research, is pretty exciting.
By applying an algorithm to a strange section of the periodic table of elements, physicists have at last been able to predict which elements could pair up with hydrogen to create a room temperature superconductor - one of the "holy grails" of physics.
Now, researchers from the Moscow Institute of Physics and Technology and Skoltech, Russia, have devised a process to pick out which of a special type of metals, known as actinides, in the periodic table would be stable enough under certain conditions to exhibit superconductivity.
And it's already led to the discovery of a material that could become a superconductor at a relatively toasty minus 20°C (minus 4°F) - although it still needs to be squeezed under high pressure.
The actinides are a series of 15 metals with large atomic numbers 89 to 103 (actinium to lawrencium), sitting alongside that other weird 'outside' block of elements, the lanthanides.
Observations of the way various metal hydrides conduct electricity at certain temperatures had led researchers to suspect there was a pattern reflected by their positions in the periodic table, but the exact link wasn't clear.
This new algorithm used the arrangements of the electrons in the actinide series of elements to predict which could team with hydrogen to provide an ideal lattice, one that would result in a strong electron-phonon interaction.
The result is the discovery of superconducting actinium hydrides that could be as warm as minus 20°C (minus 4°F).
They still need 1.5 million atmospheres of pressure, but having a better handle on how to pick and match elements to create 'warm' superconducting materials is a find worth paying attention to.
While there are still plenty of hurdles to overcome before we can expect to have resistance-free technology in our home, discovering a general principle linking the phenomenon with the periodic arrangement of elements is a significant step forward.
And it's already led to the discovery of a material that could become a superconductor at a relatively toasty minus 20°C (minus 4°F) - although it still needs to be squeezed under high pressure.
Victor Lakhno, head of the Laboratory of Quantum-Mechanical Systems of the Institute of Mathematical Problems of Biology, RAS -- the Branch of Keldysh Institute of Applied Mathematics RAS has calculated a critical temperature of the transition, energy, heat capacity and heat of transition of an ideal three-dimensional Bose-condensate of translation-invariant bipolarons (TI-bipolarons). The results obtained offer an explanation of the experiments with high-temperature superconductors.
...
In his calculations he proceeded from the same factors as the classical BCS theory did. However He excluded the electron variables from the Froehlich Hamiltonian of electron-phonon interaction instead of the phonon ones. Since in the case of a linear dispersion law (as in the BCS) phonons represent quantized acoustic waves, it can be said that in the TI-bipolaron theory, SC is caused by charged acoustic waves which form a SC condensate. In the case of HTSC materials, according to his theory, we deal not with acoustic phonons, but with optic ones since these materials are ionic crystals. As a result, the theory describes a charged Bose gas of optical phonons coupled with electron pairs which are translation-invariant (TI) bipolarons. Like Cooper pairs TI-bipolarons are plane waves possesing a small correlation length equal to several constants of the crystal lattice.
The qualitative difference of this theory from the other ones is that it implies that even at zero temperature only a small portion of all the electrons are in the TI-bipolaron (paired) state. This corresponds to the results obtained in Bo�ovi? [sic] et al experiments in 2016 and opens up new opportunities for creation of room-temperature superconductors. Since this theory suggests that in order to enhance the critical temperature of the transition, one should enhance the concentration of TI-bipolarons.
To produce a superconducting cable operable at room temperature one should use strongly underdoped HTSC material (whose SC transition temperature is very low, i.e. a few K). This material, however, already contains bipolarons, though in very small quantity. It only remains to enhance their concentration without resort to doping. This can be arranged by making the cable coaxial so that the internal small-diameter cable isolated from the external one could induce a strong electric field attracting bipolarons.
Victor Lakhno (same source)
The superconducting material, LaH10, is the latest pressurized hydride to exhibit high Tc through conventional superconductivity, the kind described by the six-decade-old Bardeen-Cooper-Schrieffer (BCS) theory. The revival of interest in BCS superconductivity stems from work by Neil Ashcroft, who predicted a half-century ago that hydrogen would not only become metallic under pressure but would also be a high-temperature superconductor. In 2004 the Cornell University theorist proposed a more practical means of realizing those properties: Rather than crush pure hydrogen to unleash its metallic abilities, subjecting a hydrogen-rich compound to lesser compression might yield similar results. Chemical bonding would do some of the work in forcing hydrogen atoms together and inducing the coupling of electrons and lattice vibrations, or phonons, that hastens BCS superconductivity.
The researchers crushed La and H2 between diamond anvils at room temperature and then laser heated the concoction. X-ray diffraction measurements revealed a distinct shift in structure at about 1000 K and 170 GPa. As predicted, LaH10 emerged with a caged structure of 32 H atoms surrounding each La atom, Hemley’s team reported in Angewandte Chemie last November. The resulting configuration pushed adjacent H atoms to within 1.1 Å of each other, a distance that’s consistent with predictions for metallic hydrogen and thus seemingly ideal for realizing high-temperature superconductivity.
The final step was to measure the electrical properties. Over the past several months, Hemley and colleagues performed several trials in labs at George Washington, the Carnegie Institution for Science, and Argonne National Laboratory. Using a four-point probe on a 5-μm-thick sample pressurized to 190 GPa, they measured a sudden drop in resistance, to about 0.5 μΩ, at 260 K. Analysis of three other samples with a less precise technique yielded evidence of sudden drops in resistance at temperatures as high as 280 K at 200 GPa. A pressurized sample of pure lanthanum showed no such resistance change.
The day after receiving a summary and figures of Hemley’s forthcoming paper, Eremets, who once worked for Hemley as a research scientist, submitted a paper of his own to arXiv. He and his team report a Tc of 215 K in a sample of lanthanum and hydrogen pressurized to 150 GPa.
Neither Hemley’s nor Eremets’s teams tested for the Meissner effect, though both plan to.
originally posted by: Arnie123
a reply to: TEOTWAWKIAIFF
You could technically milk a hamster, creamer much?
As a sample material, we decided to use the slightly overdoped bi-layer cuprate (Pb,Bi)2Sr2CaCu2O8+δ with Tc = 79 K. The substitution of Pb for Bi has the advantage of supressing the characteristic supermodulation seen in many Bi-based cuprates, simplifying the interpretation and making higher-voltage measurements possible.
A material can either be insulating or conductive. In an insulator, an extra electron will get trapped. Thus, no electric current flows in insulators. In a conductor, extra electrons will immediately flow. The more conductive the material is, the faster the electrons will flow.
The research group of Leiden physicist Milan Allan was therefore surprised to discover charge trapping in a material with zero resistance. Charge trapping is supposed to be a telltale sign of an insulator. Together with Leiden theoretical physicist Jan Zaanen, Allan's group found that the phenomenon could unravel a longstanding mystery about charge transport in a family of materials called cuprates. These poorly understood materials have no resistance, even at relatively high temperatures, and are therefore labeled high-temperature superconductors. The mechanism behind those is one of the big mysteries in physics today.
Two tunnelling processes are present, one fast, accounting for almost all the tunnelling current, and one slow, acting as a switch for the first process. This switching mechanism is usually based on Coulomb interaction. For example, if the state of the slow process is occupied, it raises the energy level of the state necessary for the fast process and effectively blocks it...
The work comes from the lab of Mikhail Eremets and colleagues at the Max Planck Institute for Chemistry in Mainz, Germany. Eremets and his colleagues say they have observed lanthanum hydride (LaH10) superconducting at the sweltering temperature of 250 K, or –23 °C.
That’s warmer than the current temperature at the North Pole. “Our study makes a leap forward on the road to the room-temperature superconductivity,” say the team. (The caveat is that the sample has to be under huge pressure: 170 gigapascals, or about half the pressure at the center of the Earth.)