It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
One potential solution to this could be increasing the strength of the magnets. Magnetic fields in fusion devices serve to keep these hot ionized gases, called plasmas, isolated and insulated from ordinary matter. The quality of this insulation gets more effective as the field gets stronger, meaning that one needs less space to keep the plasma hot. Doubling the magnetic field in a fusion device allows one to reduce its volume—a good indicator of how much the device costs—by a factor of eight, while achieving the same performance. Thus, stronger magnetic fields make fusion smaller, faster and cheaper.
A breakthrough in superconductor technology could allow fusion power plants to come to fruition. Superconductors are materials that allow currents to pass through them without losing energy, but to do so they must be very cold. New superconducting compounds, however, can operate at much higher temperatures than conventional superconductors. Critical for fusion, these superconductors function even when placed in very strong magnetic fields.
While originally in a form not useful for building magnets, researchers have now found ways to manufacture high-temperature superconductors in the form of "tapes" or "ribbons" that make magnets with unprecedented performance. The design of these magnets is not suited for fusion machines because they are much too small. Before the new fusion device, called SPARC, can be built, the new superconductors must be incorporated into the kind of large, strong magnets needed for fusion.
Machine Learning algorithms predict disruptions correctly >90% of the time with
In February the US’ main regulator the Federal Energy Regulatory Commission (FERC), issued FERC Order 841, instructing the US’ six regional electricity transmission organisations to reconfigure their wholesale markets to allow energy storage to participate. The ISOs and RTOs have about a year to respond in full.
Order 841 would open up the markets for capacity, energy and ancillary services to even small or aggregated behind-the-meter energy storage resources. In March at our publisher Solar Media’s Energy Storage Summit in London, Energy-Storage.news heard from FERC branch chief Nancy Bowler that the move “really expands the place where storage can play in the US, pretty dramatically”.
Similarly, at Energy Storage International in California a few weeks back, Janice Lin of the California Energy Storage Alliance identified Order 841 as one of the biggest pro-energy storage shifts the US energy market is likely to see.
China is making leaps and bounds in developing its "artificial sun," known as the Experimental Advanced Superconducting Tokamak (EAST) by operating nuclear fusion reaction at temperatures of 100 million degrees Celsius, according to the Institute of Plasma Physics, affiliated with the Chinese Academy of Sciences on Monday.
The Chinese research team said they were able to achieve the record temperature through the use of various new techniques in heating and controlling the plasma, but could only maintain the state for about 10 seconds.
The newly installed neutral particle heating injects fast hydrogen atoms into the plasma, which transfer their energy to the plasma particles via collisions. The result was high plasma densities of up to 2 x 10**20 particles per cubic meter – values that are sufficient for a future power station. At the same time, the ions and electrons of the hydrogen plasma reached an impressive temperature of 20 million degrees Celsius.
...
The final experiments [for Stage 2] were conducted in mid-October; in the meantime, the next round of upgrades on Wendelstein 7-X has begun. In order to be able to further increase the heating energy without overloading the vessel wall, the current graphite tiles of the divertor will be replaced over the next two years by water-cooled elements made of carbon fibre-reinforced carbon. With this equipment, work will be conducted on a step by step basis with the aim of achieving plasmas that last for 30 minutes. Then, it will remain to be seen whether Wendelstein 7-X can also fulfil its optimisation goals during continuous operation – the essential advantage of stellarators.
Dr. Llion Evans of Swansea University College of Engineering said:
"This work is a proof of concept that both these tomography methods can produce valuable data. In future these complementary techniques can be used either for the research and development cycle of fusion component design or in quality assurance of manufacturing".
The next step is to convert the 3-D images produced by this powerful technique into engineering simulations with micro-scale resolution. This technique, known as image-based finite element method (IBFEM), enables the performance of each part to be assessed individually and account for minor deviations from design caused by manufacturing processes.
As the density, temperature, and currents in the hot ionized gas, known as plasma, inside experimental fusion devices reach the point where hydrogen ions fuse to form helium and huge amounts of energy are released, the electric currents become increasingly difficult to control. If control is lost, the plasma disrupts. A dangerous avalanche of fast electrons is continuously accelerated by a self-generated electric field. These electrons can escape and melt “hot spots” in the wall. In addition to avoidance strategies, the scientists that operate future fusion reactors need mitigation strategies to reduce the damage. A new approach exploits a fan instability first observed in electromagnetic waves in the Earth’s atmosphere.
The continuous acceleration of the electrons means they get faster and faster until their speed approaches the speed of light. Then, Einstein’s theory of relativity kicks in. The mass of the electrons increases, time seems to slow down, and the resonance condition changes.
To better understand this process, scientists at the Princeton Plasma Physics Laboratory have developed a numerical simulation code that fully utilizes modern multi-core processors. When the resonance condition is satisfied, the electrons are drawn away from their original trajectories and trapped inside whirlpool-like vortices formed by the whistler waves. The energy is diffused and the momentum scattered; this is exactly what is required for mitigation: impede the relativistic electrons before they hit the wall.
Simulations of existing experiments show the importance of this fan instability in the suppression of avalanches and the enhancement of radiation (that is, cooling) from the runaway electrons. Scientists are now testing this idea as a mitigation strategy in ITER, where the whistler waves are either caused by self-excited fan instability or by the use of external antennas, to limit the damage caused by disruptions.
“We knew that these fields can become unstable,” said lead author Paulo Alves, a research associate working with Fiúza. “But what exactly happens when the magnetic fields become distorted, and could this process explain how particles gain tremendous energy in these jets? That’s what we wanted to find out in our study.”
To do so, the researchers simulated the motions of up to 550 billion particles – a miniature version of a cosmic jet – on the Mira supercomputer at the Argonne Leadership Computing Facility (ALCF) at DOE’s Argonne National Laboratory. Then, they scaled up their results to cosmic dimensions and compared them to astrophysical observations.
…
The simulations showed that when the helical magnetic field is strongly distorted, the magnetic field lines become highly tangled and a large electric field is produced inside the jet. This arrangement of electric and magnetic fields can, indeed, efficiently accelerate electrons and protons to extreme energies. While high-energy electrons radiate their energy away in the form of X-rays and gamma rays, protons can escape the jet into space and reach the Earth’s atmosphere as cosmic radiation.
The award from the DOE's Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program totals 6.05 million node-hours on three Leadership Computing Facilities at Oakridge and Argonne National Laboratories, which are DOE Office of Science User Facilities. Each computer node has thousands of CPU cores, which are individual data processors. A single node-hour is thus equivalent to thousands of core-hours.
The allotment marks the second year of the team's three-year INCITE designation, "and will enable our team to continue its study of the boundary physics of fusion plasmas for ITER," Chang said.
The PPPL deployment will be on these three supercomputers:
Summit, the newly installed Oak Ridge supercomputer that is the world's most powerful, will provide 1.05 million node-hours.
Titan, also at Oak Ridge, will provide 3.5 million node-hours.
Theta, at Argonne National Laboratory, will provide 1.5 million node-hours.
Sorensen is studying a key element of the fusion pilot plant: the liquid immersion blanket, essentially a flowing pool of molten salt that completely surrounds the fusion energy core. The purpose of this blanket is threefold: to convert the kinetic energy of [fused fast] neutrons to heat for eventual electricity production; to [breed] tritium — [one of the] component[s] of [...] fusion fuel; and to prevent the neutrons from reaching other parts of the machine and causing material damage.
[Dennis] Whyte described a growing fusion ecosystem in which researchers across disciplines — mechanical engineering, electrical engineering, aero-astro — are working together to achieve a mutual goal of fusion energy in time to make a difference. “This is exactly the kind of innovative research and development that we should be doing,” he says.
For more than 20 years TAE has been pursuing a reactor that would fuse hydrogen and boron at extremely high temperatures, releasing excess energy much as the sun does when it fuses hydrogen atoms. Lately the California company has been testing the heat capacity of its process in a machine it named Norman after the late UC Irvine physicist Norman Rostoker.
Its next device, dubbed Copernicus, is designed to demonstrate an energy gain. It will involve deuterium-tritium fusion, the aim of most competitors, but a milestone on TAE's path to a hotter, but safer, hydrogen-boron reaction.
Binderbauer expects to pass the D-T fusion milestone soon.
"What we're really going to see in the next couple years is actually the ability to actually make net energy, and that's going to happen in the machine we call Copernicus," he said in a "fireside chat" at UC Irvine.
For decades, nuclear scientists have been trying to harness the energy produced by the thermonuclear fusion of some of the lightest nuclei, deuterium (D) and tritium (T), to power thermonuclear reactors of the future.
In spin polarized DT thermonuclear fusion—where the D and T nuclei are "spinning" in the same direction—the fusion rate could be enhanced by as much 50 percent and the produced charged helium (He) nuclei could be more efficiently focused to heat up the fuel. This is one of fusion technology's next frontiers.
First Light uses a high-velocity projectile to create a shockwave to collapse a cavity containing plasma inside a 'target'. The design of these targets is First Light's "technical USP", the company said.
Machine 3 can discharge up to 200,000 volts and more than 14 million amperes - the equivalent of nearly 500 simultaneous lightning strikes - within two microseconds. The GBP3.6 million (USD4.6 million) machine uses some 3 kilometres of high-voltage cables and another 10 kilometres of diagnostic cables. Machine 3 uses electromagnetism to fire projectiles at around 20 kilometres per second.
Last July, First Light Fusion successfully fired the first test 'shot' on one of the six limbs of Machine 3 and swiftly proceeded to test three-limb shots in September.
He said the company is confident that it will be able to demonstrate first fusion using Machine 3 by mid-2019. "After fusion, the next phase is to show energy gain, which we aim to complete by 2024," Hawker added.