It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
What really happens to us after death? Once a person stops breathing, and their heart ceases to pump blood, they’re what doctors consider “clinically dead.” On a biological level, the eventual decomposition of cells, organs, and brain tissue signal its final and irreversible stages.
But what if that’s not actually the end? Two new studies claim that hundreds of genes actually kept expressing—and, in some cases, become more active—after death occurred. This came as a surprise to the researchers, because forensic pathologists have long suspected that gene activity degrades postmortem, which is why their rate of change is sometimes used to calculate time of death.
But what if that’s not actually the end? Two new studies claim that hundreds of genes actually kept expressing—and, in some cases, become more active—after death occurred. This came as a surprise to the researchers, because forensic pathologists have long suspected that gene activity degrades postmortem, which is why their rate of change is sometimes used to calculate time of death.
One of the most surprising findings, however, was that hundreds of genes actually fired up—boosting their activity—within the first 24 hours after the animals had died. Noble suspects that many of them might have been suppressed or shut off by a network of other genes when their host was alive, and only after death were they free to “reawaken.”
The team also found that many of the genes that persisted postmortem are typically active during embryonic development, which led them to theorize that, on a cellular level, newly developing lifeforms might share a lot in common with degenerating corpses.
"Since our results show that the system has not reached equilibrium yet,” one of the studies broadly speculates, “it would be interesting to address the following question: what would happen if we arrested the process of dying by providing nutrients and oxygen to tissues? It might be possible for cells to revert back to life or take some interesting path to differentiating into something new or lose differentiation altogether, such as in cancer."
Before you ask, microbiologist Peter Noble of the University of Washington, Seattle, and colleagues were not trying to find out what allows zombies to stalk Earth and slurp the brains of the unwary. Instead, the scientists wanted to test a new method they had developed for calibrating gene activity measurements.
One of the most surprising findings, however, was that hundreds of genes actually fired up—boosting their activity—within the first 24 hours after the animals had died. Noble suspects that many of them might have been suppressed or shut off by a network of other genes when their host was alive, and only after death were they free to “reawaken.”
Many of these postmortem genes are beneficial in emergencies; they perform tasks such as spurring inflammation, firing up the immune system, and counteracting stress. Other genes were more surprising. “What’s jaw-dropping is that developmental genes are turned on after death,” Noble says. These genes normally help sculpt the embryo, but they aren’t needed after birth. One possible explanation for their postmortem reawakening, the researchers say, is that cellular conditions in newly dead corpses resemble those in embryos. The team also found that several genes that promote cancer became more active. That result could explain why people who receive transplants from the recently deceased have a higher risk of cancer, Noble says.
The human brain and its neural stem cells postmortem: from dead brains to live therapy.
Contrary to the traditional dogma of being a relatively invariable and quiescent organ lacking the capability to regenerate, there is now widespread evidence that the human brain harbors multipotent neural stem cells, possibly throughout senescence. These cells can divide and give rise to neuroectodermal progeny in vivo and are now regarded as powerful prospective candidates for repairing or enhancing the functional capability of neural tissue in trauma or diseases associated with degeneration or malperfusion. Hopes primarily rest upon techniques to either recruit endogenous stem cells or to utilize exogenous donor-derived material for transplantation. In the search for suitable human cell sources, embryonic, fetal, and adult stem cells appear highly controversial, as they are accompanied by various still-unresolved moral and legal challenges. Fascinatingly, however, recent reports indicate the successful isolation and expansion of viable neural stem cells from the rodent and human brain within a considerable postmortem interval, suggesting that postmortem neural stem cells could potentially become an acceptable alternative cellular resource. This article will provide a brief overview about neural stem cells, their prominent features, and prospects for a cellular therapy, and will furthermore illuminate the cells in particular with respect to their newly discovered postmortem provenience, their advantage as a potential cell source, and several unfolding forensic considerations. Also, important ethical, social, and legal implications arising from this hitherto unpracticed cellular harvest of brain tissue from the deceased are outlined.
Haven't we heard that cells go on dividing for a while after death? Hair and nails keep growing,
Hair and fingernails continue to grow after death: This disturbing, gruesome image is pure "moonshine" according to forensic anthropologist William Maples, who was quoted in the BMJ study. However, he explained that dehydration of the body after death can cause retraction of the skin around hair and nails, giving the illusion that they have grown. All tissues require energy to sustain their functions, and no such thing is possible once the mechanism that promotes normal growth shuts down at death.
The team also found that many of the genes that persisted postmortem are typically active during embryonic development, which led them to theorize that, on a cellular level, newly developing lifeforms might share a lot in common with degenerating corpses
My first thoughts are of reincarnation.