It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
originally posted by: Barcs
a reply to: thesneakiod
Explains the math, and even calculates the light refraction near the end.
Bedford experiment was from the 1800s. Why has nobody repeated it today? Why no pictures of the edge? Every modern experiment done shows proper curvature.
originally posted by: thesneakiod
a reply to: Barcs
The Bedford canal experiment was done recently I believe, with the same results as well.
Refraction of light can produce the results noted by Rowbotham and Blount. Because the density of air in the Earth's atmosphere decreases with height above the Earth's surface, all light rays travelling nearly horizontally bend downward (assuming a curve or change in air temperature along the line of sight). This phenomenon is routinely allowed for in levelling and celestial navigation.[17]
If the measurement is close enough to the surface, light rays can curve downward at a rate equal to the mean curvature of the Earth's surface. In this case, the two effects of assumed curvature and refraction could cancel each other out and the Earth will appear flat in optical experiments.[18]
This would have been aided, on each occasion, by a temperature inversion in the atmosphere with temperature increasing with altitude above the canal, similar to the phenomenon of the superior image mirage. Temperature inversions like this are common. An increase in air temperature or lapse rate of 0.11 degrees Celsius per metre of altitude would create an illusion of a flat canal, and all optical measurements made near ground level would be consistent with a completely flat surface. If the lapse rate were higher than this (temperature increasing with height at a greater rate), all optical observations would be consistent with a concave surface, a "bowl-shaped earth". Under average conditions, optical measurements are consistent with a spherical Earth approximately 15% less curved than its true diameter.[19] Repetition of the atmospheric conditions required for each of the many observations is not unlikely, and warm days over still water can produce favourable conditions.[20]