It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
A team of University of Texas at Arlington chemists and engineers have proven that concentrated light, heat and high pressures can drive the one-step conversion of carbon dioxide and water directly into useable liquid hydrocarbon fuels.
"Our process also has an important advantage over battery or gaseous-hydrogen powered vehicle technologies as many of the hydrocarbon products from our reaction are exactly what we use in cars, trucks and planes, so there would be no need to change the current fuel distribution system," said Frederick MacDonnell, UTA interim chair of chemistry and biochemistry and co-principal investigator of the project.
"Discovering a one-step process to generate renewable hydrocarbon fuels from carbon dioxide and water is a huge achievement," Dimos said. "This work strengthens UTA's reputation as a leading research institution in the area of Global Environmental Impact, as laid out in our Strategic Plan 2020."
The authors envision using parabolic mirrors to concentrate sunlight on the catalyst bed, providing both heat and photo-excitation for the reaction. Excess heat could even be used to drive related operations for a solar fuels facility, including product separations and water purification.
MacDonnell and Dennis' investigations also are focused on converting natural gas for use as high-grade diesel and jet fuel. The researchers developed the gas-to-liquid technology in collaboration with an industrial partner in UTA's Center for Renewable Energy and Science Technology, or CREST, lab, and are now working to commercialize the process.
MacDonnell also has worked on developing new photocatalysts for hydrogen generation, with the goal of creating an artificial photosynthetic system which uses solar energy to split water molecules into hydrogen and oxygen. The hydrogen could then be used as a clean fuel.
April 23, 2009 The Guardian has reported on new research showing that in one year, a single large container ship can emit cancer and asthma-causing pollutants equivalent to that of 50 million cars. The low grade bunker fuel used by the worlds 90,000 cargo ships contains up to 2,000 times the amount of sulfur compared to diesel fuel used in automobiles. The recent boom in the global trade of manufactured goods has also resulted in a new breed of super sized container ship which consume fuel not by the gallons, but by tons per hour, and shipping now accounts for 90% of global trade by volume.
In international waters ship emissions remains one of the least regulated parts of our global transportation system. The fuel used in ships is waste oil, basically what is left over after the crude oil refining process. It is the same as asphalt and is so thick that when cold it can be walked upon . It's the cheapest and most polluting fuel available and the world's 90,000 ships chew through an astonishing 7.29 million barrels of it each day, or more than 84% of all exported oil production from Saudi Arabia, the worlds largest oil exporter.
But where does the energy come from?
The authors envision using parabolic mirrors to concentrate sunlight on the catalyst bed, providing both heat and photo-excitation for the reaction. Excess heat could even be used to drive related operations for a solar fuels facility, including product separations and water purification.
originally posted by: lordcomac
But where does the energy come from?
To take H2O and CO2 and have 'fuel' and o2 left over, you're going to wind up with something like bicarbonate anion or formaldehyde...
I'd love to see more on the chemical process they're using, though. Neat stuff.
What they do is hydrogen from water and carbon monoxide from co2 to perform a Fischer–Tropsch process (nazi tech at finest) the resultant hydrocarbon production is abysmal and a bunch of useless aromatic alcohols, last time i check cars runs in octane so that whole premise of using same old cars is a dream.
"We are the first to use both light and heat to synthesize liquid hydrocarbons in a single stage reactor from carbon dioxide and water," said Brian Dennis, UTA professor of mechanical and aerospace engineering and co-principal investigator of the project.
With the first ever production of synthesized "solar" jet fuel, the SOLAR-JET project has successfully demonstrated the entire production chain for renewable kerosene obtained directly from sunlight, water and carbon dioxide (CO2), therein potentially revolutionizing the future of aviation. This process has also the potential to produce any other type of fuel for transport applications, such as diesel, gasoline or pure hydrogen in a more sustainable way.
originally posted by: OneGoal
a reply to: eisegesis
Decentralized energy would be amazing. I can just imagine having my own one of these generators to power my house for....ever?