It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
originally posted by: TEOTWAWKIAIFF
Yet it has. Very strange.
This appears to conclusively prove emdrive works for propulsion in terms of lab work.
The prototype EmDrive built by the German researchers was a copper cavity with the same dimensions as the prototype tested by NASA in 2016. Although they limited the power supplied to the EmDrive to just 2 watts, their sensors were able to measure roughly 4 micro-Newtons of thrust. Extrapolating from this data, that means that their EmDrive prototype had a thrust-to-power ratio of about 2 milliNewtons per kilowatt, which is almost twice the thrust-to-power ratio achieved at NASA (1.3 milliNewtons per kilowatt).
Yet the German researchers noted that when they changed the direction that the EmDrive was facing, the direction of the thrust changed, but the level of thrust did not, even when the EmDrive was oriented in such a way that any applied power should produce zero thrust.
“This clearly indicates that the ‘thrust’ is not coming from the EmDrive, but some electromagnetic interaction,” the researchers wrote in their paper. “Although we used twisted or coaxial cables as much as possible, some magnetic fields will eventually leak through our cables and connectors.”
When they calculated the forces resulting from a combination of Earth’s magnetic field, the length of their cables and the electric current flowing through them, they found that the result was equal to a few micro-Newtons, which is comparable to the ‘thrust’ they had observed in the vacuum chamber. “We therefore suspect that the interaction of the power feeding for the amplifier with the Earth’s magnetic field masked any real thrusts that could be below our observed value,” they wrote. In a future test, the researchers said they planned to add Mu-metal sheets to the setup that would shield the device from these unwanted outside electromagnetic influences. Yet as they note in their paper, this type of shielding was not used during the NASA experiments.