It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Using NASA's Hubble Space Telescope, a team of astronomers has spotted a star system that could have left behind a "zombie star" after an unusually weak supernova explosion.
A supernova typically obliterates the exploding white dwarf, or dying star. On this occasion, scientists believe this faint supernova may have left behind a surviving portion of the dwarf star -- a sort of zombie star.
While examining Hubble images taken years before the stellar explosion, astronomers identified a blue companion star feeding energy to a white dwarf, a process that ignited a nuclear reaction and released this weak supernova blast. This supernova, Type Iax, is less common than its brighter cousin, Type Ia. Astronomers have identified more than 30 of these mini-supernovas that may leave behind a surviving white dwarf.
"Astronomers have been searching for decades for the star systems that produce Type Ia supernova explosions," said scientist Saurabh Jha of Rutgers University in Piscataway, New Jersey. "Type Ia's are important because they're used to measure vast cosmic distances and the expansion of the universe. But we have very few constraints on how any white dwarf explodes. The similarities between Type Iax's and normal Type Ia's make understanding Type Iax progenitors important, especially because no Type Ia progenitor has been conclusively identified. This discovery shows us one way that you can get a white dwarf explosion."
The team's results will appear in the Thursday, Aug. 7 edition of the journal Nature.
The weak supernova, dubbed SN 2012Z, resides in the host galaxy NGC 1309 which is 110 million light-years away. It was discovered in the Lick Observatory Supernova Search in January 2012. Luckily, Hubble's Advanced Camera for Surveys also observed NGC 1309 for several years prior the supernova outburst, which allowed scientists to compare before-and-after images.
Curtis McCully, a graduate student at Rutgers and lead author of the team's paper, sharpened the Hubble pre-explosion images and noticed a peculiar object near the location of the supernova.
"I was very surprised to see anything at the location of the supernova. We expected the progenitor system would be too faint to see, like in previous searches for normal Type Ia supernova progenitors. It is exciting when nature surprises us," McCully said.
After studying the object's colors and comparing with computer simulations of possible Type Iax progenitor systems, the team concluded they were seeing the light of a star that had lost its outer hydrogen envelope, revealing its helium core
originally posted by: bkfd54
I'm no scientist however, doesnt this statement conflict with the speed of light theory and our position in the galaxy? We are constently being told the light we see from these bodies is eons old so how could we see this star before and after the supernova? Considering how relatively new the Hubble is, and the region these images come from and the distance between each I just don't find this plausible. Is it?
originally posted by: wildespace
Um, aren't exploding white dwarfs produce a nova, rather than supernova? Nova explosions are always relatively weak compared to supernovae.
originally posted by: bkfd54
a reply to: wildespaceyour saying that process only took 20-24 years?
originally posted by: bkfd54
a reply to: wildespace
Ok to my original question then how could Hubble have images through the whole process from pre-explosion to supernova?
Just trying to understand....
The weak supernova, dubbed SN 2012Z, was found in the Lick Observatory Supernova Search in January 2012. Fortuitously, Hubble's Advanced Camera for Surveys also observed the supernova's host galaxy, NGC 1309, in 2005, 2006, and 2010, before the supernova outburst. NGC 1309 resides 110 million light-years away. Curtis McCully, a graduate student at Rutgers and lead author of the team's paper, reprocessed the pre-explosion images to make them sharper and noticed an object at the supernova's position.
originally posted by: bkfd54
a reply to: wildespace
But the actual event took place eons ago not actually in the present right?