It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
(CNN) -- Cassiopeia A was a star more than eight times the mass of our sun before it exploded in the cataclysmic, fiery death astronomers call a supernova.
And thanks to NASA space telescopes, scientists are learning more than ever about exactly how it happened.
The NuSTAR space telescope array is the first to map the radioactive material from a supernova explosion. The results were published Wednesday in the journal Nature.
"Until we had NuSTAR, we couldn't see down to the core of the explosion," Brian Grefenstette, lead author and research scientist at the California Institute of Technology, said at a news conference Wednesday.
NuSTAR's observations of Cassiopeia A showed scientists the location and distribution of radioactive titanium-44, an unstable isotope with a half-life of about 60 years. The supernova explosion's light arrived on Earth about 350 years ago, but even today there's still plenty of titanium-44 to be observed.
Each atom of titanium-44 decays to calcium, as well as two particles of light at particular frequencies that NuSTAR can detect. NuSTAR, which stands for Nuclear Spectroscopic Telescope Array, launched in June 2012 and consists of an instrument with two telescopes that focus high energy X-ray light.
* Source - www.cnn.com...