It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Yet since the end of the last ice age, Glacier Peak has produced some of the largest and most explosive eruptions in the state. During this time period, Glacier Peak has erupted multiple times during at least six separate episodes, most recently about 300 years ago.
Okay...this is happening at Glacier Peak. SE of Mount baker, slightly SE of my location.
The largest ejected more than five times as much tephra as the May 18, 1980, eruption of Mount St. Helens and was one of the largest in the Cascade Range since the end of the last ice age.
Originally posted by gemineye
reply to post by westcoast
I don't know much about reading these, but I'm assuming this isn't normal! A couple of those look scary, even to my untrained eye.
Keep us updated! Have you actually felt any quakes? I hope nothing big happens!
Originally posted by WHOS READY
any chance of a map/graphics detailing its position to yellow stone, gulf of mexico and new madrid fault? would be cool..
and yes bump.
cheers dude.
Yet since the end of the last ice age, Glacier Peak has produced some of the largest and most explosive eruptions in the state. During this time period, Glacier Peak has erupted multiple times during at least six separate episodes, most recently about 300 years ago.
Glacier Peak lies only 70 miles northeast of Seattle÷closer to that city than any volcano except Mount Rainier. But unlike Mount Rainier, it rises only a few thousand feet above neighboring peaks, and from coastal communities it appears merely as a high point along a snowy saw-toothed skyline. Yet Glacier Peak has been one of the most active and explosive of Washington’s volcanoes.
Since the continental ice sheets receded from the region, Glacier Peak has erupted repeatedly during at least six episodes. Two of these eruptions were among the largest in Washington during the past 15,000 years.
Glacier Peak and Mount St. Helens are the only volcanoes in Washington State that have generated large, explosive eruptions in the past 15,000 years. Their violent behavior results from the type of molten rock (magma) they produce. Dacite, the typical magma type of Mount St. Helens and Glacier Peak, is too viscous to flow easily out of the eruptive vent; it must be pressed out under high pressure. As it approaches the surface, expanding gas bubbles within the magma burst and break it into countless fragments. These fragments are collectively known as tephra; the smallest are called ash.
The largest ejected more than five times as much tephra as the May 18, 1980, eruption of Mount St. Helens and was one of the largest in the Cascade Range since the end of the last ice age.
CASCADE RANGE VOLCANOES
Current Volcano Alert Level: NORMAL
Current Aviation Color Code: GREEN
Activity Update: All volcanoes in the Cascade Range are at normal levels of background seismicity. These include Mount Baker, Glacier Peak, Mount Rainier, Mount St. Helens, and Mount Adams in Washington State; Mount Hood, Mount Jefferson, Three Sisters, Newberry Volcano, and Crater Lake, in Oregon; and Medicine Lake volcano, Mount Shasta, and Lassen Peak in northern California.
Recent Observations: No changes. Monitoring systems show that activity at Cascade Range volcanoes during the past week remains at background levels.