It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Originally posted by mnemeth1
Space does not expand since space is nothing.
Nothing can not expand.
To anyone with more than 2 functioning brain cells this should be obvious.
Engineers view black holes as the laughing stock of physics - untestable, unprovable, and in violation of every known provable law of physics.
Similarly with the "Big Bang" or the big crunch or the big whatever.
Mainstream theoretical physicists are a bunch of lying gurus that spew endless agitation propaganda to justify their continued existence and hording of tax payer dollars.
They provide us nothing. They provide no answers. They provide no insight. All of their predictions have been wrong. Their theories have no basis in reality. They are thieving jokers that loot the public and spin fantasy behind a curtain of obscure math and tell us we are simply too dumb to understand their genius.
Dark energy might not be energy and it might not be dark; the term dark energy is completely interchangeable with the cosmological constant in cosmology. Other than being the constant which defines the rate of universal expansion, nothing at all is known about it. Yet, we are able to describe interactions and physical behavior at many scales very, very well without appealing to anything "dark." The dark stuff is so far only useful for explaining wierd behaviors of huge bodies over cosmic space and time scales.
Originally posted by mnemeth1
Its not supposed to.
If the physicists actually did their job and weren't lying to us, they would have had the fundamentals of matter and the existence of the universe figured out decades ago.
Hence, they would have put themselves out of jobs.
Its not very profitable to be a theoretical physicists that actually finds the solution to everything.
Because the strength of the force falls off rapidly with distance, it is only measurable when the distance between the objects is extremely small. On a submicrometre scale, this force becomes so strong that it becomes the dominant force between uncharged conductors. In fact, at separations of 10 nm—about 100 times the typical size of an atom—the Casimir effect produces the equivalent of 1 atmosphere of pressure (101.3 kPa), the precise value depending on surface geometry and other factors.[7] In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; and in applied physics, it is significant in some aspects of emerging microtechnologies and nanotechnologies.[8]
For that reason, the group turned its attention to chiral metamaterials, so named because they do not exist in nature and must instead be made in the lab. The fact that they are artificial gives them a unique advantage, commented Koschny. “With natural materials you have to take what nature gives you; with metamaterials, you can create a material to exactly meet your requirements,” he said. The chiral metamaterials the researchers focused on have a unique geometric structure that enabled them to change the nature of energy waves, such as those located in the gap between the two closely positioned plates, causing those waves to exert a repulsive Casimir force.
"Casimir's original experiment used two metallic parallel plates to localize photons between them," Lopez said. "Suppose we do nanopatterning on one of them. Now you have a uniform plate, but the other has an array of 50 nm thick lines that work somewhat like a diffraction grating, which may balance off the photons' attractive effect, considerably reducing the Casimir forcer. However, if the nanowires are thick enough to support some sort of plasmonic excitation, repulsion may result. We're trying to balance and control the number of photons between the plates, relative to the plasmons that can be induced by creating a surface pattern, to determine whether our repulsion calculations are correct and patterning can control the Casimir Effect."
A repulsive Casimir force is attractive because there is no way today to actuate NEMS devices in a controllable way; below 1 µm, matters get complicated because there are many fringe fields, heating effects and other complicated excitations that cannot be controlled. Some researchers think that this research might lead to levitation. "If you have a nanoscale repulsive force, you can levitate objects, separated by gaps of 100 nm or so. Friction could be reduced to almost zero," Lopez said, adding that so far this is speculation. "However, if friction is eliminated, the result is a very efficient device and energy savings."
A decade ago, the Casimir Effect was an academic curiosity. Today, it is a technological problem, because if NEMS devices are to be used for thousands of applications, it becomes necessary to control the quantum forces that come into play at those scales.
Quantum mechanics is quickly becoming quantum engineering
According to relativity theory, energy is equivalent to mass as a source of gravity, thus zero-point energy should gravitate, which according to general relativity means producing a positive curvature in space-time. At first glance one might assume that if there is an enormous amount of zero-point energy underlying the universe, its effect would be to dramatically curve the universe to a minute size. Indeed, if the spectrum of zero-point energy extends to the Planck scale, its energy density would be the mass equivalent of about 1093 grams per cubic centimeter which would reduce the universe to a size smaller than an atomic nucleus.
Zero-point energy behaves differently. For ordinary radiation, the ratio of pressure to energy density is w=1/3c2, which is customarily expressed in units whereby c=1, and thus the ratio is expressed as w=+1/3. But for zero-point energy the ratio is w=-1. This is owing to the circumstance that the zero-point energy density is assumed to be constant: no matter how much the universe expands it does not become diluted, but instead more zero-point energy is assumed to be created out of nothing.
A further peculiarity is that a ratio of w=-1 implies that the zero-point energy exerts a negative pressure which, counter-intuitively, leads to an expansion of space-time.
Thus zero-point energy would appear to be identical with the mysterious dark energy, but unfortunately if the energy spectrum does continue up to the Planck frequency, there may be 120 orders of magnitude more energy per cubic centimeter than the observations of cosmic acceleration permit. Indeed, this amount of zero-point energy, interpreted this way, would have accelerated the universe into oblivion in microseconds.
Recent work by Christian Beck at the University of London and Michael Mackey at McGill University may have resolved the 120 order of magnitude problem. In that case dark energy is nothing other than zero-point energy. In Measureability of vacuum fluctuations and dark energy and Electromagnetic dark energy they propose that a phase transition occurs so that zero-point photons below a frequency of about 1.7 THz are gravitationally active whereas above that they are not. If this is the case, then the dark energy problem is solved: dark energy is the low frequency gravitationally active component of zero-point energy.
Zero-point photons continue to exist above the 1.7 THz phase transition, consistent with measurable QED effects such as the Casimir effect, the Lamb shift, etc. The proposed phase transition should be testable in the near future when the Koch et al. experiment is extended from 0.6 Tz to the proposed cutoff.
Closed universe If Ω > 1, then the geometry of space is closed like the surface of a sphere. The sum of the angles of a triangle exceeds 180 degrees and there are no parallel lines; all lines eventually meet. The geometry of the universe is, at least on a very large scale, elliptic. In a closed universe lacking the repulsive effect of dark energy, gravity eventually stops the expansion of the universe, after which it starts to contract until all matter in the universe collapses to a point, a final singularity termed the "Big Crunch," by analogy with Big Bang. However, if the universe has a large amount of dark energy (as suggested by recent findings),[citation needed] then the expansion of the universe can continue forever – even if Ω > 1. [edit]
Open universe
If Ω
In catastrophic conditions, with two celestial bodies approaching one another closely, the electromagnetic interactions may become most pronounced - the cometary protoplanet Venus produced a display of discharges between its head and its trailing part when the orbital movement of the protoplanet was disrupted by the close approach to the Earth; in the latter, eddy currents were generated with the effects due to such phenomenon