It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
However, one of these flashing lighthouses has surprised observers… it exploded, blasting vast amounts of energy into space, and then continued to spin and flash as if nothing had happened. This phenomenon has recently been observed by NASA's Rossi X-ray Timing Explorer (RXTE) and has been backed up by data from the Chandra X-ray Observatory.
There are in fact other classes of neutron star out there. Slow-spinning, highly magnetic "magnetars" are considered to be a separate type of neutron star. They are distinct from the less-magnetic pulsar as they sporadically release vast amounts of energy into space and do not exhibit the periodic rotation we understand from pulsars. It is believed that magnetars explode as the intense magnetic field (the strongest magnetic field believed to exist in the Universe) warps the neutron star surface, causing extremely energetic reconnection events between magnetic flux, causing violent and sporadic X-ray bursts.
There is now speculation that known periodic pulsars that suddenly exhibit magnetar-like explosions are actually the highly magnetic cousins of pulsars disguised as pulsars. Pulsars simply do not have enough magnetic energy to generate explosions of this magnitude, magnetars do.
Fotis Gavriil of NASA's Goddard Space Flight Center in Greenbelt, and his colleagues analysed a young neutron star (called PSR J1846-0258 in the constellation Aquila). This pulsar was often considered to be "normal" due to its fast spin (3.1 revolutions per second), but RXTE observed five magnetar-like X-ray bursts from the pulsar in 2006. Each event lasted no longer than 0.14 seconds and generated the energy of 75,000 Suns. Follow up observations by Chandra confirmed that over the course of six years, the pulsar had become more "magnetar-like". The rotation of the pulsar is also slowing down, suggesting a high magnetic field may be braking its rotation.
These findings are significant, as it suggests that pulsars and magnetars may be the same creature, just at different periods of a pulsars lifetime, and not two entirely different classes of neutron star
The first radio pulsar CP 1919 (now known as PSR 1919+21), with a pulse period of 1.337 seconds and a pulse width of 0.04 second, was discovered in 1967.[15] A drawing of this pulsar's radio waves was used as the cover of British rock band Joy Division's debut album, "Unknown Pleasures".
• The first binary pulsar, PSR 1913+16, whose orbit is decaying at the exact rate predicted due to the emission of gravitational radiation by general relativity
• The first millisecond pulsar, PSR B1937+21
• The brightest millisecond pulsar, PSR J0437-4715
• The first X-ray pulsar, Cen X-3
• The first accreting millisecond X-ray pulsar, SAX J1808.4-3658
• The first pulsar with planets, PSR B1257+12
• The first double pulsar binary system, PSR J0737−3039
• The longest period pulsar, PSR J2144-3933
• The most stable pulsar in period, PSR J0437-4715
• The magnetar SGR 1806-20 produced the largest burst of energy in the Galaxy ever experimentally recorded on 27 December 2004
• PSR B1931+24 "... appears as a normal pulsar for about a week and then 'switches off' for about one month before emitting pulses again. [..] this pulsar slows down more rapidly when the pulsar is on than when it is off. [.. the] braking mechanism must be related to the radio emission and the processes creating it and the additional slow-down can be explained by a wind of particles leaving the pulsar's magnetosphere and carrying away rotational energy.
• PSR J1748-2446ad, at 716 Hz, the pulsar with the highest rotation speed.
• PSR J0108-1431, the closest known pulsar to the Earth. It lies in the direction of the constellation Cetus, at a distance of about 85 parsecs (280 light years). Nevertheless, it was not discovered until 1993 due to its extremely low luminosity. It was discovered by the Danish astronomer Thomas Tauris. in collaboration with a team of Australian and European astronomers using the Parkes 64-meter radio telescope. The pulsar is 1000 times weaker than an average radio pulsar and thus this pulsar may represent the tip of an iceberg of a population of more than half a million such dim pulsars crowding our Milky Way.
• PSR J1903+0327, a ~2.15 ms pulsar discovered to be in a highly eccentric binary star system with a sun-like star.
• A pulsar in the CTA 1 supernova remnant initially emitted radiation in the X-ray bands. Strangely, when it was observed at a later time X-ray radiation was not detected. Instead, the Fermi Gamma-ray Space Telescope detected the pulsar was emitting gamma ray radiation, the first of its kind.
Scientists have discovered how to predict earthquake-like events in pulsars. These explosive episodes likely crack a pulsar's dense crust and momentarily bump up its spin rate.
Using NASA's Rossi X-ray Timing Explorer, the team has tracked about 20 "starquakes" on one particular pulsar over the past eight years and uncovered a remarkably simple, predictive pattern.
On February 21, 2008 it was announced that NASA and McGill University researchers had discovered a neutron star that temporarily changed from a pulsar to a magnetar. This indicates that magnetars are not merely a rare type of pulsar but may be a (possibly reversible) phase in the lives of at least some pulsars.
Originally posted by jkrog08
reply to post by ThreeDeuce
Thanks,neutron stars (pulsars and magnetars included) can get no larger than about 12 miles in diameter because of their rapid spin.
Originally posted by jkrog08
I do agree however, that scientist are starting to make up things to fill their equations and that is not right.