It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
The Strong Nuclear Force (also referred to as the strong force) is one of the four basic forces in nature (the others being gravity, the electromagnetic force, and the weak nuclear force). As its name implies, it is the strongest of the four. However, it also has the shortest range, meaning that particles must be extremely close before its effects are felt. Its main job is to hold together the subatomic particles of the nucleus (protons, which carry a positive charge, and neutrons, which carry no charge. These particles are collectively called nucleons). As most people learn in their science education, like charges repel (+ +, or - -), and unlike charges attract (+ -).
If you consider that the nucleus of all atoms except hydrogen contain more than one proton, and each proton carries a positive charge, then why would the nuclei of these atoms stay together? The protons must feel a repulsive force from the other neighboring protons. This is where the strong nuclear force comes in. The strong nuclear force is created between nucleons by the exchange of particles called mesons. This exchange can be likened to constantly hitting a ping-pong ball or a tennis ball back and forth between two people. As long as this meson exchange can happen, the strong force is able to hold the participating nucleons together. The nucleons must be extremely close together in order for this exchange to happen. The distance required is about the diameter of a proton or a neutron. If a proton or neutron can get closer than this distance to another nucleon, the exchange of mesons can occur, and the particles will stick to each other. If they can't get that close, the strong force is too weak to make them stick together, and other competing forces (usually the electromagnetic force) can influence the particles to move apart. This is represented in the following graphic. The dotted line surrounding the nucleon being approached represents any electrostatic repulsion that might be present due to the charges of the nucleons/particles that are involved. A particle must be able to cross this barrier in order for the strong force to "glue" the particles together.
LINK
Originally posted by Dr X
... quarks have been seen. Electron scattering experiments show three equidistant point particles from scattering off a neutron....