Two weeks ago, I wrote a thread regarding strange matter in the form of stars. When explaining how experiences here on earth with strange matter would
be an efficient way to destroy our planet
www.abovetopsecret.com... one member (MysterX) asked me a question that took me
a week to answer:
“I suppose the real question becomes on of if, ever a Quark S is created in the LHC for example…just how gradual would this hypothesised
compression actually be?
If we’re talking billions of years…that’s one thing, if it’s on the order of a few years, that’s another entirely.”
It got me digging further into strangelet and their implications. I also realised that if one would like to destroy earth with strange matter, it
might be a bit more complex than mention in my original thread.
Strangelet , are an hypothetical form of nuclear matter consisting of quarks S strange . Under normal nuclear conditions when s quark is created, it
undergoes spontaneous decay which transforms it into quark D (down) and U (up) through weak interactions . In a plasma of quarks the reverse reaction
can occur . The u and d quarks , forced to occupy very high energy states will convert into S quarks .
The first order reactions leading to the production of quark s are by low diffusion and semi- leptonic decay . These reactions occur very quickly , in
10-14 sec. When weak interactions are completed, the composition of the flavor of quark is optimized and yields a finite object consisting of strange
quarks density , hence its name of strange matter ( when there is not only quarks s) or strangelet ( in the case of a doublet or triplet of quarks
s) .
For those who read the first thread we recall that we could find the strange matter in neutron stars , the titanic pressure in their core being
sufficient to transform it into a plasma of quarks, a strange star. Let’s explore strange matter more before we get into their killing abilities. In
their ground state , if we meet many different quarks , one can circumvent the problem of the Pauli exclusion
en.wikipedia.org... that affects fermions . Substituting quark s for u and d quarks , one can generate a
high energy substance. Although this substance is very solid under the high mass of the s quark , A.Bodmer and E.Witten have suggested that these
strangelets could be as stable as the ordinary nuclear matter . Other researchers have also explained their relative abundance and why they probably
did not have formed in the early universe . Current physics does not yet allow to understand the interactions between quarks and say with certainty
whether strangelets are stable or non- material form . Depending on bag model developed at MIT
web.mit.edu... , the question of their mass ( or baryon number A) is still very variable , ranging from a
few units and that of a neutron star , or 10 power57 times higher.
If the strange matter contains an equal number of quarks u, d and s , it is electrically neutral. Since s quarks are heavier than the u and d quarks ,
the kinematics of the Fermi gas ( we ignore interactions) indicate that the latter is removed , giving the strange matter a positive charge per unit
baryon number . In other words, the charge / baryon , Z / A> 0 .
Recall that the baryon number is conserved in virtually all interactions and is 1 for proton and -1 for its antiparticle . Quarks have a baryon number
of +1/3. Physically speaking , this leads us to the boundary between the exclusion principle (Pauli as above) which promotes identical numbers of
components u, d and s (Z = 0) and the properties related to the excess mass of quarks s disadvantage their very existence when they have a positive Z
number .
A positive strangelet indicates it would surrounded by a cloud of electrons and lie comfortably in the heart of any solid object. The idea of a
disaster scenario in the STRANGE STAR thread refers to the fact that due to its high mass , a strangelet would attract to him all nucleons. Becoming
incredibly massive, it would sink to the center of the Earth where it would draw the whole world to it like a black hole. But how scientists reach
this conclusion ?
This hypothesis requires in theory the existence of stable negatively charged strangelets . How is this possible ? We saw a few lines above that if
the kinematic suppression was the only consequence of the mass of the strange quark, the strange matter and strangelets certainly would present a
positive electrical charge . But in any plasma of quarks, the positive charge of quarks is obliterated by the Fermi gas of electrons connected to
strange matter . In fact, the energy induced by the exchange of gluons complicates all the models. Without dwelling on the subject, perturbation
theory suggests that this energy is repulsive and tends to release the plasma of quarks . However, the gluon interactions weaken as the quark mass
increases, so that the gluonic repulsion is lower between pairs ss , su or sd between the u and d quarks .
This means that the population of s quarks in strange matter is higher than expected based on the single principle of Pauli exclusion. If the strength
of the interactions of gluons increases, reaches a point where the strange quarks dominate . It would be at this moment that the electric charge of
the strange matter becomes negative. By increasing the strength of the interactions of gluons, thus increasing the burden of strange matter to
negative. However, it also loosens the material. Unreasonably low values of the bag constant model are then required to compensate for the large
repulsive gluonic force . For this reason we consider a strange material negative charge is
highly unlikely.
Anyway, since our disaster scenario should be viable to absurdity , assume that this material is negatively charged . Let us imagine for some unknown
reason, there are stangelets in a negative steady state. Also assume, for an equally unknown reason, such an object is produced in the laboratory
during a reaction at high energy and finally assume that it survives the collision that should fragment it . That's a lot of implausible
assumptions…
Negative strangelet would then attract positive nuclei and probably absorb them . The resulting object may lose its positive charge and adjust its
strangeness number or by capturing an electron during beta decay with the emission of a positron. The new strangelet will then again have a negative
charge and maintain its appetite for nucleons. If it reaches a mass of about 0.3 ng (A ~ 2 x 10 power 14) , Glashow has shown that this object will
sink to the center of the Earth under its own weight . Its energy density would be estimated at 10 power 9 erg/cm3 approximately 0.1 eV per molecule
bound.
If its mass exceeds 1.5 ng for a nuclear density -type object becomes larger than an atom and the cloud of positrons which it is wrapped in lie mainly
within the same strangelet ( for stable strangelets become too large, the sign Z is insignificant ).
Out of characters, will continue below.
edit on 112014Fridayam131Fri, 17 Jan 2014 11:45:15 -0600America/Chicagov45 by Golantrevize because: (no reason given)