A world of cloak-and-dagger pharmaceuticals has come a step closer with the development of stealth compounds programmed to spring into action when
they receive the signal.
Researchers at the University of Nottingham's School of Pharmacy have designed and tested large molecular complexes that will reveal their true
identity only when they've reached their intended target, like disguised saboteurs working deep behind enemy lines.
The compounds have been developed as part of a five-year programme funded by the Engineering and Physical Sciences Research Council (EPSRC) called
"Bar-Coded Materials".
The cloak each spherical complex wears is perhaps more like a force field. A sheath of biocompatible polymer that encapsulates and shrouds
biologically active material inside, preventing any biological interaction so long as the shield remains in place.
The smart aspect is in the DNA-based zips that hold the coat in place until triggered to undo. Because any DNA code (or "molecular cipher") can be
chosen, the release mechanism can be bar-coded so that it is triggered by a specific biomarker for example a message from a disease gene.
What the disease gene, is then exposed to, is an active pharmaceutical compound, a molecular tag to attach to diseased tissue, or a molecular beacon
to signal activation depends on what function is needed. That's pretty cool stuff. Dangerous also?
Professor Cameron Alexander, who leads the project, says: "These types of switchable nanoparticles could be extremely versatile. As well as
initial detection of a medical condition, they could be used to monitor the progress of diseases and courses of treatment, or adapted to deliver
potent drugs at particular locations in a patient's body. It might even become possible to use mobile phones rather than medical scanners to detect
programmed responses from later generations of the devices."
In their initial trials, the team has proved the concept works in the test tube. The switchable molecular constructs do respond, as expected when
presented with the right molecular signals. The group is now working hard to push their idea forward.
An early application might be in dipstick technology, testing for specific infections in a blood or spit sample, for example. But because the polymer
coating (called polyethylene glycol) is biocompatible, the researchers are hopeful that in the long run "self-authenticating medicines" based on the
approach could be injected into patients, to seek out diseased tissue, and report their success.
The professor also said:
"The key to this breakthrough has been the five-year EPSRC Leadership Fellowship awarded to me back in 2009", Professor
Alexander comments. "This has provided the stability of funding to recruit and retain an outstanding team, who have been integral to realising the
ideas put forward in the Fellowship. It has also given us the freedom to explore a whole range of new concepts, as well as the time needed to test our
ideas to bring this and other breakthroughs within reach".
The Engineering and Physical Sciences Research Council is the UK's main agency for funding research in engineering and the physical sciences. EPSRC
invests around £800 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The
areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for
future economic development in the UK and improvements for everyone's health, lifestyle and culture. EPSRC works alongside other Research Councils
with responsibility for other areas of research.
www.epsrc.ac.uk...
The team's new results have been published in Nanoscale, the full article can be downloaded free of charge
here.
The future is here!
enjoy