It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Evolution is the change in the inherited characteristics of biological populations over successive generations. Evolutionary processes give rise to diversity at every level of biological organisation, including species, individual organisms and molecules such as DNA and proteins.[1]
All life on Earth is descended from a last universal ancestor that lived approximately 3.8 billion years ago. Repeated speciation and the divergence of life can be inferred from shared sets of biochemical and morphological traits, or by shared DNA sequences.[2] These homologous traits and sequences are more similar among species that share a more recent common ancestor, and can be used to reconstruct evolutionary histories, using both existing species and the fossil record. Existing patterns of biodiversity have been shaped both by speciation and by extinction.[3]
Charles Darwin was the first to formulate a scientific argument for the theory of evolution by means of natural selection. Evolution by natural selection is a process that is inferred from three facts about populations: 1) more offspring are produced than can possibly survive, 2) traits vary among individuals, leading to different rates of survival and reproduction, and 3) trait differences are heritable.[4] Thus, when members of a population die they are replaced by the progeny of parents that were better adapted to survive and reproduce in the environment in which natural selection took place. This process creates and preserves traits that are seemingly fitted for the functional roles they perform.[5] Natural selection is the only known cause of adaptation, but not the only known cause of evolution. Other, nonadaptive causes of evolution include mutation and genetic drift.[6]
In the early 20th century, genetics was integrated with Darwin's theory of evolution by natural selection through the discipline of population genetics. The importance of natural selection as a cause of evolution was accepted into other branches of biology. Moreover, previously held notions about evolution, such as orthogenesis and "progress" became obsolete.[7] Scientists continue to study various aspects of evolution by forming and testing hypotheses, constructing scientific theories, using observational data, and performing experiments in both the field and the laboratory. Biologists agree that descent with modification is one of the most reliably established facts in science.[8] Discoveries in evolutionary biology have made a significant impact not just within the traditional branches of biology, but also in other academic disciplines (e.g., anthropology and psychology) and on society at large.[9][10]
A genetically modified organism (GMO) is an organism whose genetic material has been altered using genetic engineering techniques. Organisms that have been genetically modified include micro-organisms such as bacteria and yeast, insects, plants, fish, and mammals. GMOs are the source of genetically modified foods, and are also widely used in scientific research and to produce goods other than food. The term GMO is very close to the technical legal term, 'living modified organism' defined in the Cartagena Protocol on Biosafety, which regulates international trade in living GMOs (specifically, "any living organism that possesses a novel combination of genetic material obtained through the use of modern biotechnology").
This article focuses on what organisms have been genetically engineered, and for what purposes. The article on genetic engineering focuses on the history and methods of genetic engineering, and on applications of genetic engineering and of GMOs. Both articles cover much of the same ground but with different organizations (sorted by organism in this article; sorted by application in the other). There are separate articles on genetically modified crops, genetically modified food, regulation of the release of genetic modified organisms, and controversies.
Panspermia (Greek: πανσπερμία from πᾶς/πᾶν (pas/pan) "all" and σπέρμα (sperma) "seed") is the hypothesis that life exists throughout the Universe, distributed by meteoroids, asteroids, comets[1][2] and planetoids.[3]
Panspermia is the proposal that life forms that can survive the effects of space, such as extremophiles, become trapped in debris that is ejected into space after collisions between planets that harbor life and small Solar System bodies (SSSB). Some organisms may travel dormant for an extended amount of time before colliding randomly with other planets or intermingling with protoplanetary disks. If met with ideal conditions on a new planet's surfaces, the organisms become active and the process of evolution begins. Panspermia is not meant to address how life began, just the method that may cause its distribution in the universe.[4][5][6]
eniar
I am for genetic modification or creation by humans, it'd bring a lot of benefits.
Undoubtedly, gene modifying is likely to happen to eliminate cancer permanently, or effects of other diseases and defects of humans and the ageing process for select people (long term space travel).
I'd be for a few modifications if it were possible.
eniar
Kind of lost on the spiritual side of the thread though.
LewsTherinThelamon
Honestly, with genetic enhancements, there are so many possibilities.