It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Expensive device taking photos of rocks in other planet.
Biased attempt to implant the idea of a lifeless planet.
I don't eat NASA's breadcrumbs.
Originally posted by Trueman
reply to post by gortex
I don't know what "great pictures" you are talking about....., deserts and rocks I have seen.
Certainly NASA's devices have the capacity to do more than that, there is no way I can believe they share all they find.
Certainly Mars is more than we've been told, otherwise NASA wouldn't be interested.
Source
The general analysis strategy begins with high resolution cameras to look for features of interest. If a particular surface is of interest, Curiosity can vaporize a small portion of it with an infrared laser and examine the resulting spectra signature to query the rock's elemental composition. If that signature intrigues, the rover will use its long arm to swing over a microscope and an X-ray spectrometer to take a closer look. If the specimen warrants further analysis, Curiosity can drill into the boulder and deliver a powdered sample to either the SAM or the CheMin analytical laboratories inside the rover.
Alpha-particle X-ray spectrometer (APXS): This device can irradiate samples with alpha particles and map the spectra of X-rays that are re-emitted for determining the elemental composition of samples.
CheMin: CheMin is short for 'Chemistry and Mineralogy', and it is an X-ray diffraction and X-ray fluorescence analyzer. It will identify and quantify the minerals present in rocks and soil and thereby assess the involvement of water in their formation, deposition, or alteration. In addition, CheMin data will be useful in the search for potential mineral biosignatures, energy sources for life or indicators for past habitable environments.
Sample Analysis at Mars (SAM): The SAM instrument suite will analyze organics and gases from both atmospheric and solid samples. This include oxygen and carbon isotope ratios in carbon dioxide (CO2) and methane (CH4) in the atmosphere of Mars in order to distinguish between their geochemical or biological origin.
Radiation Assessment Detector (RAD): This instrument was the first of ten MSL instruments to be turned on. Both en route and on the planet's surface, it will characterize the broad spectrum of radiation encountered in the Martian environment. Turned on after launch, it recorded several radiation spikes caused by the Sun. On 31 May 2013, NASA scientists reported that a possible manned mission to Mars may involve a great radiation risk based on the amount of energetic particle radiation detected by the RAD on the Mars Science Laboratory while traveling from the Earth to Mars in 2011-2012.
Dynamic Albedo of Neutrons (DAN): A pulsed neutron source and detector for measuring hydrogen or ice and water at or near the Martian surface. On August 18, 2012 (sol 12) the Russian science instrument, DAN, was turned on, marking the success of a Russian-American collaboration on the surface of Mars and the first working Russian science instrument on the Martian surface since Mars 3 stopped transmitting over forty years ago. The instrument is designed to detect subsurface water.
Rover Environmental Monitoring Station (REMS): Meteorological package and an ultraviolet sensor provided by Spain and Finland. It measures humidity, pressure, temperatures, wind speeds, and ultraviolet radiation.
Originally posted by gortex
reply to post by arianna
Cool picture , maybe its a feeding place for this Duck ....
edit on 12-8-2013 by gortex because: (no reason given)